×

Dual iterative techniques for solving a finite element approximation of the biharmonic equation. (English) Zbl 0305.65068


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35G15 Boundary value problems for linear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ciarlet, P.G.; Raviart, P.-A., A mixed finite element method for the biharmonic equation, () · Zbl 0251.65069
[2] Argyris, J.H.; Fried, I.; Scharpf, D.W., The TUBA family of plate elements for the matrix displacement method, J. roy. aero. soc., 72, 701-709, (1968)
[3] Ciarlet, P.G., Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée, (), 156-176, Part 1 · Zbl 0285.65042
[4] Ciarlet, P.G.; Raviart, P.-A., The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, (), 409-474 · Zbl 0262.65070
[5] Strang, G., Variational crimes in the finite element method, (), 689-710
[6] Glowinski, R., Approximations externes, par éléments finis de Lagrange d’ordre un et deux, du problème de Dirichlet pour l’opérateur biharmonique. Méthodes itératives de résolution des problémes approchés, (), 123-171 · Zbl 0277.35003
[7] Oden, J.T., Some contributions to the mathematical theory of mixed finite element approximations, (), 3-23 · Zbl 0374.65060
[8] Oden, J.T.; Reddy, J.N., On dual complementary variational principles in mathematical physics, (), 1-29 · Zbl 0273.49066
[9] Reddy, J.N., A mathematical theory of complementary-dual variational principles and mixed finite-element approximations of linear boundary-value problems in continuum mechanics, ()
[10] Bossavit, A., Une méthode de décomposition de l’opérateur biharmonique, ()
[11] Smith, J., The coupled equation approach to the numerical solution of the biharmonic equation by finite differences, I, SIAM J. numer. anal., 5, 323-339, (1968) · Zbl 0165.50801
[12] Smith, J., On the approximate solution of the first boundary value problem for ▽^{4}u = f, SIAM J. numer. anal., 10, 967-982, (1973) · Zbl 0268.65068
[13] Ehrlich, L.W., Solving the biharmonic equation as coupled finite difference equations, SIAM J. numer. anal., 8, 278-287, (1971) · Zbl 0198.21501
[14] McLaurin, J.W., A general coupled equation approach for solving the biharmonic boundary value problem, SIAM J. numer. anal., 11, 14-33, (1974) · Zbl 0237.65067
[15] R. Glowinski, J.L. Lions and R. Trémolières, Analyse numérique des inéquations variationnelles (to appear). · Zbl 0358.65091
[16] Ciarlet, P.G.; Glowinski, R., Sur la résolution numérique du problème de Dirichlet pour l’opérateur biharmonique, CR. acad. sci. Paris Sér., A 279, 239-241, (1974) · Zbl 0293.65085
[17] P.G. Ciarlet and P.-A. Raviart, La méthode des eléments finis pour les problèmes aux limites elliptiques (to appear).
[18] Nečas, J., LES méthodes directes en théorie des equations elliptiques, (1967), Masson Paris · Zbl 1225.35003
[19] Kondrat’ev, V.A., Boundary value problems for elliptic equations in domains with conical or angular points, Trudy mosk. mat. obšč, 16, 209-292, (1967) · Zbl 0162.16301
[20] Ekeland, I.; Temam, R., Analyse convexe et problèmes variationnels, (1974), Dunod Paris · Zbl 0281.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.