×

zbMATH — the first resource for mathematics

Some analytic estimates of class numbers and discriminants. (English) Zbl 0306.12005

MSC:
11R23 Iwasawa theory
11R42 Zeta functions and \(L\)-functions of number fields
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Kuroda, S.: On a theorem of Minkowski. SĂ»gaku14, 171-172 (1962/63). MR 28, #3983 · Zbl 0121.04402
[2] Mulholland, H. P.: On the product ofn complex homogeneous linear forms. J. London Math. Soc.35, 241-250 (1960), MR 22, #4703 · Zbl 0089.26804
[3] Narkiewicz, W.: Elementary and analytic theory of algebraic numbers (Monografie Matematyczne, No. 57), Polish Scientific Publishers (PWN), Warszawa 1974 · Zbl 0276.12002
[4] Odlyzko, A. M.: Lower bounds for discriminants of number fields. To appear in Acta Arith, · Zbl 0286.12006
[5] Odlyzko, A. M.: Lower bounds for discriminants of number fields II. To be published · Zbl 0362.12005
[6] Rogers, C. A.: The product ofn real homogeneous linear forms. Acta Math. (Stockholm)82, 185-208 (1950). MR 11, 501 · Zbl 0034.31601
[7] Stark, H. M.: Some effective cases of the Brauer-Siegel theorem. Inventiones math.23, 135-152. (1974) · Zbl 0278.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.