×

zbMATH — the first resource for mathematics

Homology fibrations and the ’group-completion’ theorem. (English) Zbl 0306.55020

MSC:
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
55R05 Fiber spaces in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, J. F.: On the groupsJ(X)-I. Topology2, 181-195 (1963) · Zbl 0121.39704 · doi:10.1016/0040-9383(63)90001-6
[2] Barratt, M. G.: A note on the cohomology of semigroups. J. Lond. Math. Soc.36, 496-498 (1961) · Zbl 0199.05302 · doi:10.1112/jlms/s1-36.1.496
[3] Barratt, M. G., Priddy, S. B.: On the homology of non-connected monoids and their associated groups. Comm. Math. Helvet.47, 1-14 (1972) · Zbl 0262.55015 · doi:10.1007/BF02566785
[4] May, J. P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc.155 (1975) · Zbl 0321.55033
[5] McDuff, D.: Configuration spaces of positive and negative particles. Topology,14, 91-107 (1975) · Zbl 0296.57001 · doi:10.1016/0040-9383(75)90038-5
[6] Quillen, D. G.: On the group completion of a simplicial monoid. Unpublished preprint · Zbl 0148.43105
[7] Quillen, D. G.: Higher algebraicK-theory I. In: AlgebaicK-theory 1, 85-147. Lecture Notes in Mathematics341, Berlin-Heidelberg-New York: Springer 1973
[8] Segal, G. B.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. (Paris)34, 105-112 (1968) · Zbl 0199.26404
[9] Segal, G. B.: Categories and cohomology theories. Topology13, 293-312 (1974) · Zbl 0284.55016 · doi:10.1016/0040-9383(74)90022-6
[10] Segal. G.B.: The classifying space for foliations. (To appear)
[11] Wagoner, J. B.: Delooping classifying spaces in algebraicK-theory. Topology11, 349-370 (1972) · Zbl 0276.18012 · doi:10.1016/0040-9383(72)90031-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.