zbMATH — the first resource for mathematics

Discrete time Galerkin methods for a parabolic boundary value problem. (English) Zbl 0306.65073

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Bramble, J.; Nitsche, J. A., A generalized Ritz-least-squares method for Dirichlet problems, SIAM J. Numer. Anal., 10, 81-93 (1973) · Zbl 0287.65056
[2] Bramble, J. H.; Schatz, A. H., Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure. Appl. Math., 23, 653-675 (1970) · Zbl 0204.11102
[3] Bramble, J.; Thomée, V., Semidiscrete-least squares method for a parabolic boundary value problem, Math. Comp., 26, 633-647 (1972) · Zbl 0268.65060
[4] Douglas, J.; Dupont, T., Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 7, 575-626 (1970) · Zbl 0224.35048
[5] Nitsche, J. A., Linear Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal., 36, 348-355 (1970) · Zbl 0192.44503
[6] Nitsche, J. A., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36, 9-15 (1971) · Zbl 0229.65079
[7] Price, H. S.; Varga, R. S., Error bounds for semi-discrete Galerkin approximations of parabolic problems with application to petroleum reservoir mechanics, 74-94 (1970), R.I.: Numerical Solution of Field Problems in Continuum Physics, AMS Providence, R.I.
[8] Varga, R. S., Matrix Iterative Analysis (1962), Englewood Cliffs, N.J.: Prentice-Hall, Englewood Cliffs, N.J. · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.