×

Concerning first countable spaces. III. (English) Zbl 0307.54026

MSC:

54E30 Moore spaces
54B05 Subspaces in general topology
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
54E20 Stratifiable spaces, cosmic spaces, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48. · Zbl 0296.54027
[2] C. E. Aull, Topological spaces with a \?-point finite base, Proc. Amer. Math. Soc. 29 (1971), 411 – 416. · Zbl 0213.24102
[3] R. H. Bing, Metrization of topological spaces, Canadian J. Math. 3 (1951), 175 – 186. · Zbl 0042.41301
[4] Ben Fitzpatrick Jr., On dense subspaces of Moore spaces, Proc. Amer. Math. Soc. 16 (1965), 1324 – 1328. · Zbl 0134.41001
[5] Ben Fitzpatrick Jr., On dense subsets of Moore spaces. II, Fund. Math. 61 (1967), 91 – 92. · Zbl 0173.25102
[6] A. Miščenko, Spaces with a pointwise denumerable basis, Dokl. Akad. Nauk SSSR 144 (1962), 985 – 988 (Russian).
[7] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. · Zbl 0192.28901
[8] -, A set of axioms for plane analysis situs, Fund. Math. 25 (1935), 13-28. · Zbl 0011.27501
[9] Kiiti Morita, Some properties of \?-spaces, Proc. Japan Acad. 43 (1967), 869 – 872. · Zbl 0153.52403
[10] Carl Pixley and Prabir Roy, Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton Jones on the occasion of his 60th birthday), Auburn Univ., Auburn, Ala., 1969, pp. 75 – 85. · Zbl 0259.54022
[11] C. W. Proctor, Metrizable subsets of Moore spaces, Fund. Math. 66 (1969/1970), 85 – 93. · Zbl 0191.21101
[12] Franklin D. Tall, The normal Moore space problem, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 243 – 261.
[13] G. M. Reed, Concerning first countable spaces, Fund. Math. 74 (1972), no. 3, 161 – 169. · Zbl 0227.54019
[14] G. M. Reed, Concerning first countable spaces. II, Duke Math. J. 40 (1973), 677 – 682. · Zbl 0297.54025
[15] G. M. Reed, Concerning normality, metrizability and the Souslin property in subspaces of Moore spaces, General Topology and Appl. 1 (1971), no. 3, 223 – 246. · Zbl 0224.54040
[16] G. M. Reed, Concerning completable Moore spaces, Proc. Amer. Math. Soc. 36 (1972), 591 – 596. · Zbl 0273.54020
[17] G. M. Reed, On screenability and metrizability of Moore spaces, Canad. J. Math. 23 (1971), 1087 – 1092. · Zbl 0228.54023
[18] G. M. Reed, On completeness conditions and the Baire property in Moore spaces, TOPO 72 — general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Springer, Berlin, 1974, pp. 368 – 384. Lecture Notes in Math., Vol. 378.
[19] G. M. Reed, On chain conditions in Moore spaces, General Topology and Appl. 4 (1974), 255 – 267. · Zbl 0295.54042
[20] G. M. Reed, On continuous images of Moore spaces, Canad. J. Math. 26 (1974), 1475 – 1479. · Zbl 0312.54031
[21] Mary Ellen Estill, Concerning abstract spaces, Duke Math. J. 17 (1950), 317 – 327. · Zbl 0039.39303
[22] Mary Ellen Estill, Separation in non-separable spaces, Duke Math. J. 18 (1951), 623 – 629. · Zbl 0044.19503
[23] K. R. Van Doren, Inverse limits and closed mappings (to appear). · Zbl 0256.54017
[24] -, Closed, continuous images of complete metric spaces (to appear). · Zbl 0263.54021
[25] J. N. Younglove, Concerning dense metric subspaces of certain non-metric spaces, Fund. Math. 48 (1959), 15 – 25. · Zbl 0105.16501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.