zbMATH — the first resource for mathematics

Basis of invariants and canonical forms for linear dynamic systems. (English) Zbl 0307.93010

93B10 Canonical structure
93C05 Linear systems in control theory
93A10 General systems
Full Text: DOI
[1] Luenberger, D.G., Canonical forms for linear multi-variable systems, IEEE trans. short papers, AC-12, 290-293, (1967)
[2] Popov, V.M., Some properties of the control systems with irreducible matrix-transfer functions, (), Lecture Notes in Mathematics, No. 144 · Zbl 0209.45802
[3] Ackermann, J.E.; Bucy, R.S., Canonical minimal realization of a matrix of impulse response sequences, Inform. control, 19, 224-231, (1971) · Zbl 0224.93010
[4] Bucy, R.S.; Ackermann, J., Über die anzahl der parameter von mehrgrössen-systemen, Regelungstechnik, 18, 451-452, (1970) · Zbl 0205.19603
[5] Mayne, D.Q., A canonical model for identification of multivariable linear systems, IEEE trans. AC, AC-17, 728-729, (1972) · Zbl 0265.93008
[6] Popov, V.M., Invariant description of linear, time-invariant controllable systems, SIAM J. control, 10, 254-264, (1972) · Zbl 0251.93013
[7] Kalman, R.E., On structural properties of linear, constant, multivariable systems, (), paper 6A, London · Zbl 0149.05302
[8] MacLane, S.; Birkhoff, G., Algebra, (1967), Macmillan New York · Zbl 0153.32401
[9] Kalman, R.E.; Falb, P.; Arbib, M., Topics on mathematical system theory, (1969), McGraw-Hill New York · Zbl 0231.49001
[10] Silverman, L.M., Realization of linear dynamical systems, IEEE trans, AC-16, (1971)
[11] Kalman, R.E., Kronecker invariants and feedback, () · Zbl 0308.93008
[12] Gantmacher, F.R., ()
[13] Rosenbrock, H.H., State-space and multivariable theory, (1970), Wiley New York · Zbl 0246.93010
[14] \scJ. Rissanen: Solution of Linear Equations With Hankel and Toeplits Matrices (to appear).
[15] Rissanen, J.; Kailath, T., Partial realization of random systems, (), 389-396, also · Zbl 0243.93026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.