×

\(p\)-adic proofs of congruences for the Bernoulli numbers. (English) Zbl 0308.10006


MSC:

11B68 Bernoulli and Euler numbers and polynomials
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11A07 Congruences; primitive roots; residue systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Borevič, Z.I.; Šafarevič, I.R., (), Academic Press, New York
[2] Carlitz, L., Some congruences for the Bernoulli numbers, Amer. J. math., 75, 163-172, (1953) · Zbl 0050.03902
[3] Friedmann, A.; Tamarkine, J., Quelques formules concernant la theorie de la fonction [x] et des nombres de Bernoulli, J. reine angew. math., 135, 146-156, (1909) · JFM 39.0262.10
[4] Iwasawa, K., On some invariants of cyclotomic fields, Amer. J. math., 80, 773-783, (1958), Erratum, ibid.{\bf81} (1959), 280 · Zbl 0084.04101
[5] Iwasawa, K., A class number formula for cyclotomic fields, Ann. math., 76, 171-179, (1962) · Zbl 0125.02003
[6] Iwasawa, K., On some modules in the theory of cyclotomic fields, J. math. soc. Japan, 16, 42-82, (1964) · Zbl 0125.29207
[7] Johnson, W., On the vanishing of the Iwasawa invariant μp for p < 8000, Math. comp., 27, 387-396, (1973) · Zbl 0281.12006
[8] Johnson, W., Irregular prime divisors of the Bernoulli numbers, Math. comp., 28, 653-657, (1974) · Zbl 0293.10008
[9] Kobelev, V.V., Proof of Fermat’s last theorem for all prime exponents less than 5500, Sov. math. dokl., 11, 188-190, (1970) · Zbl 0205.06501
[10] Kummer, E.E., Über eine allgemeine eigenshaft der rational entwickelungs-coëfficienten einer bestimmten gattung analytischer functionen, J. reine angew. math., 41, 368-372, (1851)
[11] Lehmer, D.H.; Lehmer, E.; Vandiver, H.S., An application of high-speed computing to Fermat’s last theorem, (), 25-33 · Zbl 0055.04004
[12] Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. math., 39, 350-360, (1938) · JFM 64.0095.04
[13] Mirimanoff, D., L’équation indéterminée xl + yl + zl = 0 et le critérium de Kummer, J. reine angew. math., 128, 45-68, (1905)
[14] Selfridge, J.L.; Nicol, C.A.; Vandiver, H.S., Proof of Fermat’s last theorem for all prime exponents less than 4002, (), 970-973 · Zbl 0065.27304
[15] Selfridge, J.L.; Pollack, B.W., Fermat’s last theorem is true for any exponent up to 25,000, Not. amer. math. soc., 11, 97, (1964)
[16] Stafford, E.T.; Vandiver, H.S., Determination of some properly irregular cyclotomic fields, (), 139-150 · JFM 56.0887.04
[17] Uspensky, J.; Heaslet, M., ()
[18] Vandiver, H.S., Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat’s quotient and Bernoulli numbers, Ann. math., 18, 105-114, (1917) · JFM 46.1444.03
[19] Vandiver, H.S., Summary of results and proofs on Fermat’s last theorem, (), 661-673, (Sixth paper) · Zbl 0003.15002
[20] Vandiver, H.S., On Bernoulli’s numbers and Fermat’s last theorem, Duke math. J., 3, 569-584, (1937) · Zbl 0018.00505
[21] Vandiver, H.S., Examination of methods of attack on the second case of Fermat’s last theorem, (), 732-735 · Zbl 0056.04103
[22] Johnson, W., Irregular primes and cyclotomic invariants, Math. comp., 29, 113-120, (1975) · Zbl 0302.10020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.