zbMATH — the first resource for mathematics

Double layer potentials and the Dirichlet problem. (English) Zbl 0308.31008

31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
31B25 Boundary behavior of harmonic functions in higher dimensions
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
Full Text: EuDML
[1] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin, 1966. · Zbl 0142.38402
[2] N. Boboc C. Constantinescu, A. Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math. J. 23 (1963), 73-96. · Zbl 0139.06603
[3] Ju. D. Burago, V. G. Mazja: Some questions in potential theory and function theory for regions with irregular boundaries. (Russian), Zapiski nauč. sem. Leningrad otd. MIAN 3 (1967).
[4] M. Dont: Non-tangential limits of the double layer potentials. Časopis pro pěstování matematiky 97 (1972), 231-258. · Zbl 0237.31012
[5] H. Federer, W. H. Fleming: Normal and integral currents. Annals of Math. 72 (1960), 458-520. · Zbl 0187.31301
[6] L. L. Helms: Introduction to potential theory. Wiley-Interscience, New York, 1969. · Zbl 0188.17203
[7] J. Köhn, M. Sieveking: Zum Cauchyschen und Dirichletschen Problem. Math. Ann. 177 (1968), 133-142. · Zbl 0165.13003
[8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. · Zbl 0149.07906
[9] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (95) (1970), 556-598. · Zbl 0213.38203
[10] J. Král: A note on the Robin problem in potential theory. Comment. Math. Univ. Carolinae
[11] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22 (97) (1972), 312-324. · Zbl 0241.31008
[12] I. Netuka: An operator connected with the third boundary value problem in potential theory. ibid. 462-489. · Zbl 0241.31009
[13] I. Netuka: The third boundary value problem in potential theory. ibid. 554-580. · Zbl 0383.31002
[14] I. Netuka: Double layer potential representation of the solution of the Dirichlet problem. Comment. Math. Univ. Carolinae 14 (1973), 183-185. · Zbl 0255.31009
[15] C. de la Vallée Poussin: Propriété des fonctions harmoniques dans un domaine ouvert limité par des surfaces à courbure borné. Ann. Scuola Norm. Sup. Pisa 2 (1933), 167-197. · JFM 59.1136.02
[16] Š. Schwabik: On an integral operator in the space of functions with bounded variation. Časopis pro pěstování matematiky 97 (1972), 297-330. · Zbl 0255.47057
[17] R. Sikorski: Funkcje rzeczewiste. Tom 1, PWN, Warszava, 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.