×

A branch and bound algorithm for the generalized assignment problem. (English) Zbl 0308.90028


MSC:

90C10 Integer programming
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] V. Balachandran, ”An integer generalized transportation model for optimal job assignment in computer networks”, Working Paper 34-72-3, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pa. (November, 1972).
[2] A. Charnes, W.W. Cooper, D. Klingman and R. Niehaus, ”Static and dynamic biased quadratic multi-attribute assignment models: solutions and equivalents”, Center for Cybernetic Studies, Research Report CS 115, The University of Texas, Austin, Texas (January, 1973).
[3] R.J. Dakin, ”A tree search algorithm for mixed integer programming problems”,Computer Journal 8 (3) (1965) 250–255. · Zbl 0154.42004 · doi:10.1093/comjnl/8.3.250
[4] A. DeMaio and C. Roveda, ”An all zero–one algorithm for a certain class of transportation problems”,Operations Research 19 (6) (1971) 1406–1418. · Zbl 0276.90037 · doi:10.1287/opre.19.6.1406
[5] A.M. Geoffrion, ”An improved implicit enumeration approach for integer programming”,Operations Research 17 (3) (1969) 437–454. · Zbl 0174.20801 · doi:10.1287/opre.17.3.437
[6] A.M. Geoffrion, ”Lagrangean relaxation for integer programming”,Mathematical Programming Study 2 (1974) 82–114. · Zbl 0395.90056
[7] A.M. Geoffrion and G.W. Graves, ”Multicommodity distribution system design by benders decomposition”,Management Science 20 (5) (1974) 822–844. · Zbl 0304.90122 · doi:10.1287/mnsc.20.5.822
[8] H. Greenberg and R.L. Hegerich, ”A branch search algorithm for the knapsack problem”,Management Science 16 (5) (1970) 327–332. · Zbl 0191.48401 · doi:10.1287/mnsc.16.5.327
[9] M.D. Grigoriadis, D.T. Tang and L.S. Woo, ”Considerations in the optimal synthesis of some communication networks”, Presented at the 45th Joint National Meeting of the Operations Research Society of America and The Institute of Management Sciences, Boston, Mass., April 22–24, 1974.
[10] D. Gross and C.E. Pinkus, ”Optimal allocation of ships to yards for regular overhauls”, Tech. Memorandum 63095, Institute for Management Science and Engineering, The George Washington University, Washington, D.C. (May, 1972).
[11] G.P. Ingargiola and J.F. Korsh, ”Reduction algorithm for zero–one single knapsack problems”,Management Science 20 (4) Part I (1973) 460–463. · Zbl 0304.90082 · doi:10.1287/mnsc.20.4.460
[12] D. Klingman and J. Stutz, ”Computational testing on an integer generalized network code”, Presented at the 45th Joint National Meeting of the Operations Research Society of America and The Institute of Management Sciences, Boston, Mass., April 22–24, 1974.
[13] J.R. Lourie, ”Topology and computation of the generalized transportation problem”,Management Science 11 (1) (1964) 177–187. · doi:10.1287/mnsc.11.1.177
[14] V. Srinivasan and G. Thompson, ”An algorithm for assigning uses to sources in a speical class of transportation problems”,Operations Research 21 (1) (1973) 284–295. · Zbl 0259.90029 · doi:10.1287/opre.21.1.284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.