zbMATH — the first resource for mathematics

Oscillation criteria for third-order linear differential equations. (English) Zbl 0309.34028

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: EuDML
[1] HANAN M.: Oscillation criteria for third-order linear differential equations. Pacific J. Math. 11, 1961, 919-944. · Zbl 0104.30901
[2] ŠVEC M.: Some remarks on a third linear differential equation. (Russian). Czechosl. Math. J. 15 (90), 1965, 42-49.
[3] SWANSON C. A.: Comparison and Oscillation Theory of Linear Differential Equation. New York and London 1968. · Zbl 0191.09904
[4] LEIGHTON W., NEHARI Z.: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order. Trans. Amer. Math. Soc. 89, 1958, 325-377. · Zbl 0084.08104
[5] GREGUŠ M.: Über die lineare homogene Differentialgleichung dritter Ordnung. Wiss. Z. Univ. Halle, Math.-Nat. XII/3.S. 265-286. März 1963. · Zbl 0118.30501
[6] LAZER A. C: The behavior of solutions of the differential equation y”’ + p(x)y’ + q(x)y = 0. Pacif. J. Math. 17, 1966, 435-466. · Zbl 0143.31501
[7] ŠVEC M.: Einige asymptotische und oszillatorische Eigenschaften der Differential-gleichung y”’ + A(x)y’ + B(x)y = 0. Czechosl. Math. J. 15 (90), 1965, 378-393. · Zbl 0143.11202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.