×

zbMATH — the first resource for mathematics

Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. (English) Zbl 0309.35057

MSC:
35P05 General topics in linear spectral theory for PDEs
35J60 Nonlinear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12, 623-727 (1959). · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Amann, H., On the existence of positive solutions of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21, 125-146 (1971). · Zbl 0219.35037 · doi:10.1512/iumj.1971.21.21012
[3] Ambrosetti, A, & P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Func. Anal., 14, 349-381 (1973). · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[4] Bandle, C., Mean value theorems for functions satisfying the inequality 217-01. Arch. Rational Mech. Anal. 51, 70-84 (1973). · Zbl 0257.35039 · doi:10.1007/BF00275994
[5] Bandle, C., Sur un problème de Dirichlet non linéaire. C. R. Acad. Sci. 276, Ser.A, 1155-1157 (1973). · Zbl 0249.35031
[6] Chandrasekar, S., An Introduction to the Theory of Stellar Structures. Dover, N.Y. 1957.
[7] Cohen, D.S., Positive solutions of a class of nonlinear eigenvalue problems. J. Math. Mech. 17, 209-215 (1967). · Zbl 0154.12701
[8] Crandall, M.G., & P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal. 52, 161-180 (1973). · Zbl 0275.47044 · doi:10.1007/BF00282325
[9] Friedman, A., Partial Differential Equations, 262 p. New York: Holt, Rhinehart & Winston, Inc., 1969. · Zbl 0224.35002
[10] Frank-Kamenetskii, D.A., Diffusion and Heat Transfer in Chemical Kinetics. New York: Plenum Press 1969.
[11] Fujita, H., On the nonlinear equations ?u + e u = 0 and \({{\partial v} \mathord{\left/{\vphantom {{\partial v} {\partial t{\text{ = }}\Delta }}} \right.\kern-\nulldelimiterspace} {\partial t{\text{ = }}\Delta }}v{\text{ + }}e^v\) . Bull. Amer. Math. Soc. 75, 132-135 (1969). · Zbl 0216.12101 · doi:10.1090/S0002-9904-1969-12175-0
[12] Gelfand, I.M., Some problems in the theory of quasilinear equations. Amer. Math. Soc. Translations, 1(2) 29, 295-381 (1963). · Zbl 0127.04901
[13] Joseph, D.D., & T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49, 241-269 (1973). · Zbl 0266.34021
[14] Joseph, D.D., & E.M. Sparrow, Nonlinear diffusion induced by nonlinear sources. Quar. J. Appl. Math. 28, 327-342 (1970). · Zbl 0208.13006
[15] Keller, H.B., & D.S. Cohen, Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 16, 1361-1376 (1967). · Zbl 0152.10401
[16] Keller, H.B., & J.P. Keener, Positive solutions of convex nonlinear eigenvalue problems. J. Diff. Equa. 16, 103 (1974). · Zbl 0284.45011 · doi:10.1016/0022-0396(74)90010-2
[17] Laetsch, T., On the number of solutions of boundary value problems with convex nonlinearities. J. Math. Anal. Appl. 35, 389-404 (1971). · Zbl 0213.38002 · doi:10.1016/0022-247X(71)90226-5
[18] Laetsch, T., Asymptotic branch points and multiple positive solutions of nonlinear integral equations. SIAM J. Math. Anal. 6, 178-191 (1975). · Zbl 0291.45009 · doi:10.1137/0506018
[19] Rabinowitz, P.H., Some aspects of nonlinear eigenvalue problems. Rocky Mnt. J. Math. 3, 161-202 (1973). · Zbl 0255.47069 · doi:10.1216/RMJ-1973-3-2-161
[20] Schaefer, H.H., Topological Vector Spaces, Graduate Texts in Mathematics 3. New York: Springer 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.