×

Adjoint domains and generalized splines. (English) Zbl 0309.41014


MSC:

41A15 Spline approximation
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] J. H. Ahlberg, E. N. Nilson: The approximation of linear functional. SIAM J. Numer. AnaL 3 (1966), 173-182. · Zbl 0147.05102
[2] P. M. Anselone, P. J. Laurent: A general method for the construction of interpolating or smoothing spline-functions. Numer. Math. 12 (1968), 66-82. · Zbl 0197.13501
[3] R. Arens: Operational calculus of linear relations. Pacific J. Math. 11 (1961), 9-23. · Zbl 0102.10201
[4] M. Attela: Généralisation de la définition et des propriétés des ”spline fonction”. C. R. Acad. Sci., Paris, Sér. A 260 (1965), 3550-3553. · Zbl 0163.37703
[5] M. Attela: Spline-fonctions généralisées. C R. Acad. Sci., Paris, Sér. A 261 (1965), 2149-2152. · Zbl 0127.06601
[6] R. C. Brown: The adjoint and Fredholm index of a linear system with general boundary conditions. Technical Summary Report #1287, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1972.
[7] R. C. Brown: Duality theory for \(n^th\) order differential operators under Stieltjes boundary conditions. Technical Summary Report #1329, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1973.
[8] C. de Boor: Best approximation properties of spline functions of odd degree. J. Math. Mech. 12 (1963), 747-749, · Zbl 0116.27601
[9] C. de Boor, R. E. Lynch: On splines and their minimum properties. J. Math. Mech. 15 (1966), 953-970. · Zbl 0185.20501
[10] S. Goldberg: Unbounded Linear Operators. McGraw-Hill, New York, 1966. · Zbl 0148.12501
[11] M. Golomb, H. F. Weinberger: Optimal approximation and error bounds. On Numerical Approximation. R. E. Langer, Editor, University of Wisconsin Press, Madison, 1959, pp. 117-190.
[12] T. N. E. Greville: Interpolation by generalized spline functions. Technical Summary Report #784, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1964. · Zbl 0141.33602
[13] T. N. E. Greville: Data fitting by spline functions. Technical Summary Report #893, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1968.
[14] J. W. Jerome: Linear self-adjoint multipoint boundary value problems and related approximation schemes. Numer. Math. 15 (1970), 433 - 449. · Zbl 0214.41801
[15] J. W. Jerome, L. L. Schumaker: On Lg-splines. J. Approximation Theory 2 (1969), 29-49. · Zbl 0172.34501
[16] J. W. Jerome, R. S. Varga: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems. Theory and Applications of Spline Functions, T. N. E. Greville, Editor, Academic Press, New York, 1969, pp. 103-155. · Zbl 0188.13004
[17] A. M. Krall: Differential operators and their adjoints under integral and multiple point boundary conditions. J. Differential Equations 4 (1968), 327-336. · Zbl 0165.42702
[18] A. M. Krall: Boundary value problems with interior point boundary conditions. Pacific J. Math. 29 (1969), 161-166. · Zbl 0189.45401
[19] T. R. Lucas: A generalization of L-splines. Numer. Math. 15 (1970), 359-370. · Zbl 0214.41303
[20] T. R. Lucas: M-splines. J. Approximation Theory 5 (1972), 1-14. · Zbl 0227.41002
[21] M. A. Naimark: Linear Differential Operators. Part II. Ungar, New York, 1968. · Zbl 0227.34020
[22] A. Sard: Optimal approximation. J. Functional Analysis 1 (1967), 222-244. · Zbl 0158.13601
[23] I. J. Schoenberg: On interpolation by spline functions and its minimal properties. On Approximation Theory, (Proceedings of the Conference held in the Mathematical Research Institute at Oberwolfach, Black Forest, Aug. 4-10, 1963), P. L. Butzei, Birkhäuser Verlag, Basel, 1964, pp. 109-129.
[24] I. J. Schoenberg: On trigonometric spline interpolation. J. Math. Mech. 13 (1964), 795-825. · Zbl 0147.32104
[25] I. J. Schoenberg: On the Ahlberg-Nilson extension of spline interpolation: the g-splines and their optimal properties. J. Math. Anal. Appl. 21 (1968), 207-231. · Zbl 0159.08401
[26] M. H. Schultz, R. S. Varga: X-splines. Numer. Math. 10 (1967), 345-369. · Zbl 0183.44402
[27] F. W. Stallard: Differential systems with interface conditions. Oak Ridge National Laboratory Report, ORNL 1876 (1955).
[28] J. L. Wash J. H. Ahlberg, E. N. Nilson: Best approximation properties of the spline fit. J. Math. Mech. 11 (1962), 225-234. · Zbl 0196.48603
[29] A. Zettl: Adjoint and self-adjoint boundary value problems with interface conditions. Technical Summary Report # 827, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1967. · Zbl 0162.11201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.