×

zbMATH — the first resource for mathematics

Endomorphisms of irreducible subshifts of finite type. (English) Zbl 0309.54032

MSC:
54H20 Topological dynamics (MSC2010)
37D99 Dynamical systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. L. Adler, A. G. Konheim andM. H. McAndrew, Topological entropy,Trans. Amer. Math. Soc. 114 (1965), 309–319. · Zbl 0127.13102 · doi:10.1090/S0002-9947-1965-0175106-9
[2] P. Billingsley,Ergodic Theory and Information, Wiley, New York, 1965. · Zbl 0141.16702
[3] R. Bowen, Markov partitions for axiom A diffeomorphisms,Amer. J. Math. 92 (1970), 725–747. · Zbl 0208.25901 · doi:10.2307/2373370
[4] R. Bowen, Topological entropy and axiom A,Global Analysis, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, R.I., pp. 23–41.
[5] R. Bowen, Topological entropy for non-compact sets (preprint).
[6] F. R. Gantmacher,The Theory of Matrices, Vol. II, Chelsea, New York, 1959. · Zbl 0085.01001
[7] L. W. Goodwyn, Comparing topological entropy with measure-theoretic entropy,Amer. J. Math. 94 (1972), 366–388. · Zbl 0249.54021 · doi:10.2307/2374626
[8] L. W. Goodwyn, Topological entropy and expansive cascades, Univ. of Maryland Dissertation, 1968.
[9] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,Math. Systems Theory 3 (1969), 320–375. · Zbl 0182.56901 · doi:10.1007/BF01691062
[10] D. Newton andW. Parry, On a factor automorphism of a normal dynamical system,Ann. Math. Statist. 37 (1966), 1528–1533. · Zbl 0178.52703 · doi:10.1214/aoms/1177699144
[11] W. Parry, Intrinsic Markov chains,Trans. Amer. Math. Soc. 112 (1964), 55–66. · Zbl 0127.35301 · doi:10.1090/S0002-9947-1964-0161372-1
[12] S. Smale, Differentiable dynamical systems,Bull. Amer. Math. Soc. 73 (1967), 747–817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[13] B. Weiss, Intrinsically ergodic systems,Bull. Amer. Math. Soc. 76 (1970), 1266–1269. · Zbl 0218.28011 · doi:10.1090/S0002-9904-1970-12632-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.