Dettweiler, Egbert Grenzwertsätze für Wahrscheinlichkeitsmaße auf Badrikianschen Räumen. (German) Zbl 0309.60010 Z. Wahrscheinlichkeitstheor. Verw. Geb. 34, 285-311 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 16 Documents MSC: 60B15 Probability measures on groups or semigroups, Fourier transforms, factorization 28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) 46G99 Measures, integration, derivative, holomorphy (all involving infinite-dimensional spaces) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Badrikian, A., Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, Lecture Notes Math. 139. (1970), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0209.48402 [2] Bourbaki, N.: Eléments de Mathématique. Livre VI Intégration, chapitre IX (1969) · Zbl 0189.14201 [3] Dettweiler, E.: GrenzwertsÄtze für Wahrscheinlichkeitsma\e auf Badrikianschen RÄumen. Dissertation Tübingen 1974 (unveröffentlicht) · Zbl 0309.60010 [4] Fernique, X., Processus linéaires, processus généralisés, Ann. Inst. Fourier, t., XVII, 1-92 (1967) · Zbl 0167.16702 [5] Fernique, X., Lois indéfiniment divisibles sur l’espace des distributions, Invent, math., 3, 282-292 (1967) · Zbl 0173.16104 [6] Fernique, X., Séries de variables aléatoires indépendentes, Publ. Inst. Statist. Univ. Paris, 16, 35-46 (1967) · Zbl 0171.15601 [7] Parthasarathy, K. R., Probability measures on metric spaces (1967), New York-London: Academic Press, New York-London · Zbl 0153.19101 [8] Tortrat, A., Structure des lois indéfiniment divisibles dans un espace vectoriel topologique, Lecture Notes Math. 31. (1967), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0153.19301 [9] Tortrat, A., Sur la structure des lois indéfiniment divisibles dans les espaces vectoriels, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 11, 311-326 (1969) · Zbl 0167.46203 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.