zbMATH — the first resource for mathematics

A probabilistic interpretation of complete monotonicity. (English) Zbl 0309.60012

60E05 Probability distributions: general theory
26A48 Monotonic functions, generalizations
Full Text: DOI EuDML
[1] Aczél, J.,Lectures on Functional Equations and Their Applications (Academic Press, New York – London 1966). · Zbl 0139.09301
[2] Apostol, Tom M.,Mathematical Analysis (Addison Wesley, Reading, Massachusetts 1957). · Zbl 0077.05501
[3] Eisenberg, S. M.,Moment Sequences and the Bernstein Polynomials, Canad. Math. Bull.12, 401–411 (1969). · Zbl 0186.11201
[4] Feller, W.,An Introduction to Probability Theory and Its Applications, Vol. II. (John Wiley and Sons, New York 1968). · Zbl 0155.23101
[5] de Finetti, B.,Funzione caratteristica di un fenomeno aleatorio, Mem. Reale Academia Naz. Lincei, Ser. 64, 251–299 (1931). · JFM 57.0610.01
[6] Kimberling, C. H.,On a Class of Associative Functions, Publ. Math. Debrecen (to appear). · Zbl 0276.26011
[7] Ling, Cho-Hsin,Representation of Associative Functions, Publ. Math. Debrecen12, 189–212 (1965).
[8] Menger, K.,Statistical Metrics, Proc. Nat. Acad. Sci. U.S.A.28, 535–537 (1942). · Zbl 0063.03886
[9] Mostert, P. S. andShields, A. L.,On the Structure of Semigroups on a Compact Manifold with Boundary, Ann. of Math.65, 117–143 (1957). · Zbl 0096.01203
[10] Schweizer, B. andSklar, A.,Associative Functions and Statistical Triangle Inequalities, Publ. Math. Debrecen8, 169–186 (1961). · Zbl 0107.12203
[11] Schweizer, B. andSklar, A.,Associative Functions and Abstract Semigroups. Publ. Math. Debrecen10, 69–81 (1963).
[12] Storey, C. R.,The Structure of Threads, Pacific J. Math.10, 1429–1445 (1960). · Zbl 0096.25303
[13] Tucker, H. G.,A Graduate Course in Probability (Academic Press, New York 1967). · Zbl 0159.45702
[14] Widder, D. V.,The Laplace Transform (Princeton University Press, Princeton 1946). · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.