×

Convergence theorems for weakly almost periodic Markov operators. (English) Zbl 0309.60048


MSC:

60J35 Transition functions, generators and resolvents
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Akcoglu, J. Huneke, and H. Rost,A counter example to the Blum Hanson Theorem in general spaces, Pacific J. Math.47 (1973). · Zbl 0252.47006
[2] Blum, J.; Hanson, D., On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc., 66, 308-311 (1960) · Zbl 0096.09005
[3] deLeeuw, K.; Glicksberg, I., Applications of almost periodic compactifications, Acta Math., 105, 63-97 (1961) · Zbl 0104.05501
[4] Doob, J., Stochastic Processes (1953), New York: Wiley, New York · Zbl 0053.26802
[5] Dunford, N.; Schwartz, J., Linear Operators (1958), New York: Interscience, New York · Zbl 0084.10402
[6] Foguel, S., The Ergodic Theory of Markov Processes (1969), New York: Van Nostrand, New York · Zbl 0282.60037
[7] Jacobs, K., Neure Methoden und Ergebnisse der Ergodentheorie (1960), Berlin: Springer Verlag, Berlin · Zbl 0102.32903
[8] Jamison, B., Ergodic decompositions induced by certain Markov operators, Trans. Amer. Math. Soc., 117, 451-468 (1965) · Zbl 0143.19803
[9] Jamison, B.; Sine, R., Irreducible almost periodic Markov operators, J. Math. Mech., 18, 1043-1057 (1969) · Zbl 0266.60056
[10] Jamison, B., Irreducible Markov operators on C(S), Proc. Amer. Math. Soc., 24, 366-370 (1970) · Zbl 0195.41402
[11] Lloyd, S. P., On certain projections in the space of continuous functions, Pacfic. J. Math., 13, 171-175 (1963) · Zbl 0113.09902
[12] Orey, S., Lecture Notes on Limit theorems for Markov Chain Transition Probabilities (1970), New York: Van Nostrand, New York
[13] Rosenblatt, M., Equicontinuous Markov operators, Theor. Verojatnost. i Primenen., 9, 205-222 (1964) · Zbl 0133.40101
[14] Sine, R., Geometric theory of a single Markov operator, Pacific J. Math., 27, 155-166 (1968) · Zbl 0281.60083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.