×

zbMATH — the first resource for mathematics

Parameter estimation using splines. (English) Zbl 0309.62072

MSC:
62M99 Inference from stochastic processes
41A15 Spline approximation
62M20 Inference from stochastic processes and prediction
93E10 Estimation and detection in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hilborn, C.G.; Lainiotis, D.G., Learning systems for minimum risk adaptive pattern classification and optimal adaptive estimation, () · Zbl 0184.22002
[2] Lainiotis, D.G., Adaptive mixture decomposition: A unifying approach, (), 104-106 · Zbl 0229.68034
[3] Hilborn, C.G.; Lainiotis, D.G., Optimal estimation in the presence of unknown parameters, IEEE trans. syst. sci. cybernet., SSC5, 1, 38-43, (January 1969)
[4] Lainiotis, D.G., Optimal adaptive estimation: structure and parameter adaptation, () · Zbl 0199.54603
[5] Sims, F.L.; Lainiotis, D.G., Recursive algorithm for the calculation of the adaptive filter weighting coefficients, IEEE trans. auto. control, AC14, 2, 215-218, (April 1969)
[6] Lainiotis, D.G., Optimal adaptive estimation: structure and parameter adaptation, IEEE trans. auto. control, AC16, 2, 160-170, (April 1970)
[7] Lainiotis, D.G., Supervised learning recursive filters for optimal structure and parameter adaptive pattern recognition: discrete data case, IEEE trans. inform. theory, IT17, 1, (January 1971)
[8] Schoenberg, I.J., On spline functions, (), 255-291 · Zbl 0147.32101
[9] Marsden, M.J., An inequality for spline functions with applications to variation diminishing spline approximation, J. approx. theory, 3, 7-49, (1970) · Zbl 0192.42103
[10] DeFigueiredo, J.P.; Jan, Y.G., Spline filters, () · Zbl 0314.93037
[11] Curry, H.B.; Schoenberg, I.J., On polya frequency functions IV: the fundamental spline functions and their limits, J. anal. math., 17, 71-107, (1966) · Zbl 0146.08404
[12] Munteanu, M.J.; Schumaker, L.L., Some multi-dimensional spline approximation methods, () · Zbl 0278.41012
[13] Deshpande, J.G.; Lainiotis, D.G., Identification and control of linear stochastic systems using spline functions, () · Zbl 0264.93038
[14] Sorenson, H.W., On the development of practical nonlinear filters, Inform. sci., 7, 3/4, 253-270, (1974), Fall · Zbl 0291.93052
[15] Sengbush, R.L.; Lainiotis, D.G., Simplified parameter quantization procedure, IEEE trans. auto. control, AC14, 4, 424-425, (August 1969)
[16] Bucy, R.S.; Senne, K.D., Digital synthesis of nonlinear filters, Automatica, 7, 3, 287-298, (May 1971)
[17] Aoki, M., Optimization of stochastic systems, (1967), Academic New York
[18] Lainiotis, D.G.; Park, S.K.; Krishnaiah, R., Optimal state vector estimation for non-Gaussian initial state-vector, IEEE trans. auto. control, AC16, 2, 197-198, (April 1971)
[19] Sorenson, H.W.; Alspach, D.L., Recursive Bayesian estimation using Gaussian sums, Automatica, 7, 4, (July 1971)
[20] Park, S.K.; Lainiotis, D.G., Monte-Carlo study of the optimal non-linear estimator: linear systems with non-Gaussian initial states, Int. J. control, 16, 4, 1029-1040, (1972) · Zbl 0246.93035
[21] Lo, J.T., Finite-dimensional sensor orbits and optimal nonlinear filtering, IEEE trans. inform. theory, IT18, 5, (September 1972)
[22] Alspach, D.L.; Sorenson, H.W., Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE trans. auto. control, AC17, 4, (August 1972)
[23] Lainiotis, D.G.; Park, S.K., On joint detection, estimation, and system identification: discrete data case, Int. J. control, 17, 3, 609-633, (1973) · Zbl 0249.93046
[24] Alspach, D.L., The use of Gaussian sum approximations on nonlinear filtering, Inform. sci., 7, 3/4, 271-290, (1974), this issue. · Zbl 0291.93053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.