×

zbMATH — the first resource for mathematics

On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. (English) Zbl 0309.65034

MSC:
65L05 Numerical methods for initial value problems involving ordinary differential equations
65J99 Numerical analysis in abstract spaces
34D05 Asymptotic properties of solutions to ordinary differential equations
34E05 Asymptotic expansions of solutions to ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Germund G. Dahlquist, A special stability problem for linear multistep methods, Nordisk Tidskr. Informations-Behandling 3 (1963), 27 – 43. · Zbl 0123.11703
[2] Olof B. Widlund, A note on unconditionally stable linear multistep methods, Nordisk Tidskr. Informations-Behandling 7 (1967), 65 – 70. · Zbl 0178.18502
[3] Syvert P. Nørsett, A criterion for \?(\?)-stability of linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 9 (1969), 259 – 263. · Zbl 0185.41701
[4] C. W. Gear, The automatic integration of stiff ordinary differential equations., Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 187 – 193.
[5] Charles E. Treanor, A method for the numerical integration of coupled first-order differential equations with greatly different time constants, Math. Comp. 20 (1966), 39 – 45. · Zbl 0149.11303
[6] Syvert P. Nørsett, An \?-stable modification of the Adams-Bashforth methods, Conf. on Numerical Solution of Differential Equations (Dundee, 1969) Springer, Berlin, 1969, pp. 214 – 219. · Zbl 0188.22502
[7] Byron L. Ehle, High order \?-stable methods for the numerical solution of systems of D.E.’s, Nordisk Tidskr. Informationsbehandling (BIT) 8 (1968), 276 – 278. · Zbl 0176.14604
[8] B. L. Ehle, On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems, Report CSRR 2010, University of Waterloo, Department of Applied Analysis and Computer Science, March 1969.
[9] Owe Axelsson, A class of \?-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 9 (1969), 185 – 199.
[10] Owe Axelsson, A note on a class of strongly \?-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 1 – 4. · Zbl 0236.65047
[11] F. H. Chipman, \?-stable Runge-Kutta processes, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 384 – 388. · Zbl 0265.65035
[12] F. H. Chipman, Numerical Solution of Initial Value Problems Using A-Stable Runge-Kutta Processes, Report CSRR 2042, University of Waterloo, Department of Applied Analysis and Computer Science, June 1971. · Zbl 0265.65035
[13] H. A. Watts and L. F. Shampine, \?-stable block implicit one-step methods, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 252 – 266. · Zbl 0253.65045
[14] M. P. Halstead, A. Prothero & C. P. Quinn, ”A mathematical model of the cool-flame oxidation of acetaldehyde,” Proc. Roy. Soc. London Ser. A, v. 322, 1971, pp. 377-403.
[15] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50 – 64. · Zbl 0123.11701
[16] J. H. Seinfeld, L. Lapidus & M. Hwang, ”Review of numerical integration techniques for stiff ordinary differential equations,” Ind. Eng. Chem. Fundamentals, v. 9, 1970, pp. 266-275.
[17] A. R. Gourlay, A note on trapezoidal methods for the solution of initial value problems, Math. Comp. 24 (1970), 629 – 633. · Zbl 0233.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.