×

Congruences on products of algebras and functionally complete algebras. (English) Zbl 0311.08006


MSC:

08B20 Free algebras
08B99 Varieties
08Axx Algebraic structures
Full Text: DOI

References:

[1] G. Birkhoff,Lattice theory, 3rd edition (1967), Amer. Math. Soc. Coll. Publ. XXV. · Zbl 0153.02501
[2] A. Day,A characterization of modularity for congruence lattices of algebras, Can. Math. Bull.12 (1969), 167–173. · Zbl 0181.02302 · doi:10.4153/CMB-1969-016-6
[3] G. A. Fraser and A. Horn,Congruence relations in direct products, Proc. Amer. Math. Soc.26 (1970), 390–394. · Zbl 0241.08004 · doi:10.1090/S0002-9939-1970-0265258-1
[4] B. Ganter and H. Werner,Equational classes of Steiner systems, T. H. Darmstadt Preprint56 (1973). · Zbl 0312.08002
[5] J. Hagemann,Grundlagen der allgemeinen topologischen algebra, in preparation.
[6] A. F. Pixley,Functionally complete algebras generating distributive and permutable classes, Math. Z.114 (1970), 361–372. · doi:10.1007/BF01110387
[7] H. Werner,Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z. 121 (1971), 111–140. · Zbl 0203.22902 · doi:10.1007/BF01113481
[8] H. Werner,Eine Charakterisierung funktional vollständiger Algebren. Archiv d. Math.21 (1970), 381–385. · Zbl 0211.32003 · doi:10.1007/BF01220934
[9] R. Wille,Kongruenzklassengeometrien, Springer Lecture Notes,113 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.