×

zbMATH — the first resource for mathematics

Groups generated by root-involutions. II. (English) Zbl 0311.20016

MSC:
20F05 Generators, relations, and presentations of groups
20D99 Abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alperin, J; Gorenstein, D, The multiplicators of certain simple groups, (), 515-519 · Zbl 0151.02002
[2] Aschbacher, M; Aschbacher, M; Aschbacher, M; Aschbacher, M, Finite groups generated by odd transpositions. IV, Math. Z., J. algebra, J. algebra, J. algebra, 26, 451-491, (1973), II-IV · Zbl 0277.20036
[3] Aschbacher, M, A condition for the existence of a strongly embedded subgroup, Bull. amer. math. soc., 78, 68-71, (1972)
[4] Baer, R, Engelsche elemente noetherscher gruppen, Math. ann., 133, 156-170, (1957) · Zbl 0078.01501
[5] Carter, R, Simple groups and simple Lie-algebras, J. London math. soc., 40, 193-240, (1965) · Zbl 0232.20017
[6] Coxeter, H; Moser, W, Generators and relations for discrete groups, (1964), Springer Verlag Berlin/New York
[7] Curtis, C; Reiner, I, Representation theory of finite groups and associative algebras, (1962), Interscience Publishers New York · Zbl 0131.25601
[8] Dieudonné, J, La Géométrie des groupes classiques, (1963), Springer Verlag Berlin/New York · Zbl 0111.03102
[9] Fischer, B, Finite groups generated by 3-transpositions, Invent. math., 13, 232-246, (1971) · Zbl 0232.20040
[10] \scB. Fischer, Subgroups of ^2E6(2) isomorphic to M(22), manuscript.
[11] Fong, P, Some sylowsubgroups of order 32 and a characterization of U3(3), J. algebra, 6, 66-67, (1967)
[12] Glauberman, G, Central element of core-free groups, J. algebra, 4, 403-420, (1966) · Zbl 0145.02802
[13] Gorenstein, D, Finite groups, (1968), Harper and Row New York · Zbl 0185.05701
[14] Griess, R, Schur multipliers of the known finite simple groups, Bull. amer. math. soc., 78, 68-71, (1972) · Zbl 0263.20008
[15] Hall, M; Wales, D, The simple group of order 604800, J. algebra, 9, 417-450, (1968) · Zbl 0172.03103
[16] Harris, M, A characterization of odd order extensions of G2(2n) by the centralizer of one central involution, J. algebra, 23, 231-309, (1972)
[17] Harris, M, A characterization of odd order extensions of D42(q3) by the centralizer of one central involution, J. algebra, 24, 226-244, (1973)
[18] \scG. Higgman, Odd characterizations of finite simple groups, lecture notes, Univ. of Michigan.
[19] Huppert, B, Endliche gruppen I, (1968), Springer Verlag Berlin/New York
[20] Janko, Z, Some new simple groups of finite order I, (), 24-64
[21] McLaughlin, J, Some groups generated by transvections, Arch. math. (basel), 18, 364-368, (1967) · Zbl 0232.20084
[22] McLaughlin, J, Some subgroups of SLn(F2), Illinois J. math., 13, 108-115, (1969) · Zbl 0179.04901
[23] Nan, M.O, A characterization of Ln(q) as a permutation group, Math. Z., 127, 300-314, (1972)
[24] \scE. Shult, On the fusion of involutions in its centraliser, to appear.
[25] Steinberg, R, Automorphisms of finite linear groups, Canad. J. math., 14, 277-283, (1962) · Zbl 0103.26204
[26] Steinberg, R, Representations of algebraic groups, Nagoya math. J., 22, 33-56, (1963) · Zbl 0271.20019
[27] Suzuki, M, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. math., 82, 191-212, (1965) · Zbl 0132.01704
[28] Suzuki, M, A simple group of order 448 345 497 600, ()
[29] Thomas, G, A characterization of the Steinberg-groups G2(2n), J. algebra, 13, 87-118, (1969)
[30] Thomas, G, A characterization of Steinberg-groups ^3D4(2n), J. algebra, 14, 373-386, (1970)
[31] Thompson, J, Nonsolvable groups all of whose local subgroups are solvable, Bull. amer. math. soc., 74, 383-437, (1968) · Zbl 0159.30804
[32] \scJ. Thompson, Quadratic pairs, to appear. · Zbl 0236.20024
[33] Timmesfeld, F, Eine kennzeichnung der linearen gruppen über GF(2), Math. ann., 189, 134-160, (1970) · Zbl 0188.06702
[34] Timmesfeld, F, A characterization of the chevally-and Steinberg-groups over F2, Geometriae dedicata, 1, 269-323, (1973)
[35] Timmesfeld, F, Groups generated by root involutions. I, J. algebra, 33, 75-134, (1975) · Zbl 0293.20026
[36] \scJ. Tits, Notes on finite BN-pairs, Lecture Notes, Springer-Verlag, Berlin.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.