×

zbMATH — the first resource for mathematics

Some generating functions for polynomials. (English) Zbl 0311.33013

MSC:
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33E99 Other special functions
05A15 Exact enumeration problems, generating functions
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] J. W. Brown: On Zero Type Sets of Laguerre Polynomials. Duke Math J., 35 (1968), 821 - 823. · Zbl 0167.35201
[2] L. Carlitz: Some Generating Functions for Laguerre Polynomials. Duke Math. J., 35 (1968), 825-827, · Zbl 0167.35202
[3] S. K. Chatterjea: On a Generalization of Laguerre Polynomials. Rend. del Sem. Mate. della Univ. di Padova, 34 (1964), 180-190. · Zbl 0126.28402
[4] E. Feldheim: Relations entre les polynomes de Jacobi, Laguerre et Hermite. Acta Mathematica, 74 (1941), 117-138. · Zbl 0027.10201
[5] H. W. Gould, A. T. Hopper: Operational Formulas Connected With Two Generalizations of Hermite Polynomials. Duke Math. J., 29 (1962), 51 - 63. · Zbl 0108.06504
[6] H. L. Krall, O. Frink: A New Class of Orthogonal Polynomials: The Bessel Polynomials. Trans. Amer. Math. Soc., 65 (1949), 100-115. · Zbl 0031.29701
[7] H. B. Mittal: Operational Representations for Generalized Laguerre Polynomials. Communicated for publication.
[8] H. B. Mittal: Operational Formulae for Polynomials Defined by a Generalized Rodrigues Formula. Communicated for publication.
[9] H. B. Mittal: Some Generating Functions. Communicated for publication. · Zbl 0311.33013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.