×

zbMATH — the first resource for mathematics

A period mapping for certain semi-universal deformations. (English) Zbl 0312.14006

MSC:
14B05 Singularities in algebraic geometry
14D15 Formal methods and deformations in algebraic geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] M. Artin : On isolated rational singularities for surfaces . Amer. J. of Math. 88 (1966) 129-136. · Zbl 0142.18602 · doi:10.2307/2373050
[2] N. Bourbaki : Groupes et algèbres de Lie . Ch. 4, 5 et 6, Hermann, Paris (1968). · Zbl 0483.22001
[3] E. Brieskorn : Die Monodromie der isolierten Singularitäten von Hyperflächen . Manuscripta Math. 2 (1970) 103-161. · Zbl 0186.26101 · doi:10.1007/BF01155695 · eudml:153994
[4] E. Brieskorn : Singular elements of semi-simple algebraic groups . Actes du Congrès Intern. des Math. 2. Nice (1970). · Zbl 0223.22012
[5] P. Deligne : Equations differentiels à points singuliers réguliers . Lecture Notes in Math. 163. Springer Verlag, Berlin etc. (1970). · Zbl 0244.14004 · doi:10.1007/BFb0061194
[6] G.-M. Greuel : Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten . Thesis, Göttingen (1973). · Zbl 0285.14002 · doi:10.1007/BF01352108 · eudml:162693
[7] J. Milnor : Singular points of complex hypersurfaces. Ann. of Math. Studies 61. Princeton University Press (1968). · Zbl 0184.48405 · doi:10.1515/9781400881819
[8] R. Narasimhan : Introduction to the theory of analytic spaces . Lecture Notes in Math. 25. Springer Verlag, Berlin etc. (1966). · Zbl 0168.06003 · doi:10.1007/BFb0077071
[9] K. Saito : Einfach elliptische Singularitäten . Inventiones Math. 23 (1974) 289-325. · Zbl 0296.14019 · doi:10.1007/BF01389749 · eudml:142265
[10] G.N. Tjurina : Flat locally semi-universal deformations of isolated singularities of complex spaces . Izw. Akad. Nauk SSSR, Ser. Mat. 33 (1969) 1026-1058. · Zbl 0196.09702
[11] B. Teissier : Thèse (2ième partie) . Université Paris VII (1973).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.