Steinberg, Robert Torsion in reductive groups. (English) Zbl 0312.20026 Adv. Math. 15, 63-92 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 60 Documents MSC: 20G99 Linear algebraic groups and related topics 22C05 Compact groups 22E60 Lie algebras of Lie groups 22E50 Representations of Lie and linear algebraic groups over local fields PDF BibTeX XML Cite \textit{R. Steinberg}, Adv. Math. 15, 63--92 (1975; Zbl 0312.20026) Full Text: DOI OpenURL References: [1] Borel, A, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku math. J., 13, 216-240, (1961) · Zbl 0109.26101 [2] Borel, A, Linear algebraic groups, (1969), Benjamin New York · Zbl 0186.33201 [3] Borel, A, (), Part E [4] Borel, A; Hirzebruch, F, Characteristic classes and homogeneous spaces III, Amer. J. math., 82, 491-504, (1960) [5] Borel, A; de Siebenthal, J, LES sous-groupes fermés de rang maximum des groupes de Lie clos, Comm. math. helv., 23, 200-221, (1949) · Zbl 0034.30701 [6] Bourbaki, N, Groupes et algèbres de Lie, (1968), Hermann Paris, Chapters 4-6 [7] Kostant, B, Lie group representations on polynomial rings, Amer. J. math., 85, 327-404, (1963) · Zbl 0124.26802 [8] Chevalley, Séminaire C, Sur la classification des groupes de Lie algébriques, (1956-1958), Inst. H. Poincaré Paris, 2 Vol. [9] Serre, J.-P, Corps locaux, (1968), Hermann Paris [10] de Siebenthal, J, Sur LES sous-groupes fermés connexes des groupes de Lie clos, Comm. math. helv., 25, 210-256, (1951) · Zbl 0044.01702 [11] Steinberg, R, Lectures on Chevalley groups, (1968), Yale University Math. Dept [12] Steinberg, R, Endomorphisms of linear algebraic groups, Amer. math. soc. mem., No. 80, (1968) · Zbl 0164.02902 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.