×

zbMATH — the first resource for mathematics

A generalization of a theorem of Duchon on products of vector measures. (English) Zbl 0312.28015

MSC:
28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration
28A35 Measures and integrals in product spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bartle, R, A general bilinear vector integral, Studia math., 15, 337-352, (1956) · Zbl 0070.28102
[2] Batt, J, Applications of the orlicz—pettis theorem to operator-valued measures and compact and weakly compact transformations on the space of continuous functions, Rev. roumaine math. pures appl., 15, 907-935, (1969) · Zbl 0189.43001
[3] Brooks, J, On the existence of a control measure for strongly bounded vector measures, Bull. amer. math. soc., 77, 999-1001, (1971) · Zbl 0229.28008
[4] Dinculeanu, N, Vector measures, (1966), Pergamon Press Berlin · Zbl 0142.10502
[5] Dinculeanu, N; Kluvanek, I, On vector measures, (), 505-512 · Zbl 0195.34002
[6] Dobrakov, I, On integration in Banach spaces I, Czechoslovak math. J., 20, 511-536, (1970) · Zbl 0215.20103
[7] Duchon, M, On the projective tensor product of vector-valued measures, Mat. casopis sloven. akad. vied., 17, 113-120, (1967) · Zbl 0162.19102
[8] Duchon, M, On the projective tensor product of vector-valued measures II, Mat. časopis sloven. akad. vied., 19, 228-234, (1969) · Zbl 0188.20602
[9] Duchon, M, A dominancy of vector-valued measures, Bull. acad. polon. sci., 19, 1085-1091, (1971) · Zbl 0242.28009
[10] Duchon, M; Kluvanek, I, Inductive tensor product of vector-valued measures, Mat. časopis sloven. akad. vied., 17, 108-112, (1967) · Zbl 0162.19101
[11] Dudley, R.M; Pakula, L, A counter-example on the inner product of measures, Indiana univ. math. J., 21, 843-845, (1972) · Zbl 0221.28003
[12] Dunford, N; Schwartz, J, Linear operators, (1958), Interscience New York
[13] Garnir, H.G; deWilde, M; Schmets, J, Analyse functionnelle I, (1968), Birkhäuser Verlag
[14] Kakutani, S, An example concerning uniform boundedness of spectral measures, Pacific J. math., 4, 363-372, (1954) · Zbl 0056.34702
[15] Kluvanek, I, An example concerning the projective tensor product of vector measures, Mat. časopis sloven. akad. vied., 20, 81-83, (1970) · Zbl 0199.20501
[16] Kluvanek, I; Kovarikova, M, Product of spectral measures, Czechoslovak math. J., 17, 248-255, (1967) · Zbl 0159.19603
[17] Rao, M.B, Countable additivity of a set function induced by two vector-valued measures, Indiana univ. math. J., 21, 847-848, (1972) · Zbl 0239.28002
[18] Swartz, C, The product of vector-valued measures, Bull. Australian math. soc., 8, 359-366, (1973) · Zbl 0248.28009
[19] Treves, F, Topological vector spaces, distributions and kernels, (1967), Academic Press New York · Zbl 0171.10402
[20] Tweddle, I, Vector-valued measures, (), 469-489 · Zbl 0189.44903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.