Optimization algorithms and point-to-set-maps. (English) Zbl 0312.90052


90C30 Nonlinear programming
90C25 Convex programming
65K05 Numerical mathematical programming methods
Full Text: DOI


[1] C. Berge,Espaces topologiques–Fonctions multivoques (Dunod, Paris, 1966). · Zbl 0164.52902
[2] A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simultanées,Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 25-2 (1847) 536–538.
[3] G. Debreu,Theory of value, Cowles Foundations–Monograph 17 (Wiley, New York, 1959). · Zbl 0193.20205
[4] M. Frank and Ph. Wolfe, An algorithm for quadratic programming,Journal of Naval Research Logistic Quaterly 3 (1956) 95–120.
[5] W.W. Hogan, Point-to-set maps in mathematical programming, Working Paper No. 170, Western Management Sciences Institute, University of California, Los Angeles, Calif. (1971).
[6] P. Huard, Resolution of mathematical programming with nonlinear constraints by the centres, in: J. Abadie, ed.,Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 209–219. · Zbl 0157.49701
[7] P. Huard, Programmation mathématique convexe,Revue Francaise d’Information et de Recherche Opérationnelle 7 (1968) 43–59. · Zbl 0159.48602
[8] P. Huard, A method of centers by upper-bounding functions with applications, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 1–30. · Zbl 0253.90049
[9] R. Meyer, The validity of a family of optimization methods,SIAM Journal on Control 8 (1970) 41–54. · Zbl 0194.20501
[10] E. Polak, On the implementation of conceptual algorithms, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 275–291. · Zbl 0228.90051
[11] J.B. Rosen, The gradient projection method for nonlinear programming, Part I: Linear constraints,SIAM Journal 8 (1960) 181–217. · Zbl 0099.36405
[12] J.B. Rosen, Iterative solution of nonlinear optimal control problem,SIAM Journal on Control 4 (1966) 223–244. · Zbl 0229.49025
[13] W.I. Zangwill,Nonlinear programming: a unified approach (Prentice Hall, Englewood Cliffs, 1969). · Zbl 0195.20804
[14] G. Zoutendijk,Methods of feasible directions (Elsevier, Amsterdam, 1960). · Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.