×

zbMATH — the first resource for mathematics

Uniformity of congruences. (English) Zbl 0313.08001

MSC:
08B99 Varieties
08Axx Algebraic structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. D. Bacsich and D. Rowlands-Hughes,Syntactic characterization of amalgamation, convexity and related properties, J. Symbolic Logic (to appear). · Zbl 0302.02019
[2] S. Bulman-Fleming, A. Day, and W. Taylor,Regularity and modularity of congruences, Algebra Universalis 4 (1974), 58–60. · Zbl 0296.08016
[3] C. C. Chang and H. J. Keisler,Model Theory, North-Holland, Amsterdam, 1973.
[4] B. Csákány,Characterization of regular varieties, Acta Sci. Math. (Szeged)31 (1970), 187–189.
[5] R. Engelking,Outline of general topology, North-Holland, Amsterdam, 1968. · Zbl 0157.53001
[6] P. Erdös, A. Hajnal, and R. Rado,Partition relations for cardinal numbers, Acta Math. (Hungary)16 (1965), 93–196. · Zbl 0158.26603
[7] P. Erdös and R. Rado,A partition calculus in set theory, Bull. Amer. Math. Soc.62 (1956), 427–489. · Zbl 0071.05105
[8] N. Funayama and T. Nakayama,On the distributivity of a lattice of lattice-congruences, Proc. Imp. Acad. Tokyo18 (1942), 553–554. · Zbl 0063.01483
[9] D. Geiger,Coherent algebras, Abstract 74T-A130, Notices Amer. Math. Soc.21 (1974), A-436.
[10] G. Grätzer,Two Mal’cev-type theorems in universal algebra, J. Combinatorial Theory8 (1970), 334–342. · Zbl 0194.01401
[11] J. Hagemann,On regular and weakly regular congruences, Algebra Universalis (to appear). · Zbl 0273.08001
[12] B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121. · Zbl 0167.28401
[13] W. Taylor,Some constructions of compact algebras. Annals math. Logic3 (1971), 395–435. · Zbl 0239.08003
[14] W. Taylor,Residually small varieties, Algebra Universalis2 (1972), 33–53. · Zbl 0263.08005
[15] W. TaylorCharacterizing Mal’cev conditions, Algebra Universalis 3 (1973), 351–397. · Zbl 0304.08003
[16] W. Taylor,Uniformity of congruences, Abstract 711-08-1, Notices Amer. Math. Soc.21 (1974), A-47.
[17] H. A. Thurston,Derived operations and congruences, Proc. London Math. Soc. (3)8 (1958), 127–134. · Zbl 0078.01901
[18] B. Weglorz,Equationally compact algebras (III), Fund. Math.60 (1967), 89–93. · Zbl 0263.08002
[19] R. Wille,Kongruenzklassengeometrien, Lecture notes in Mathematics No. 113, Springer-Verlag, Berlin, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.