×

zbMATH — the first resource for mathematics

Finite groups with intrinsic 2-components of type \(\hat A_n\). (English) Zbl 0313.20007

MSC:
20D05 Finite simple groups and their classification
20D25 Special subgroups (Frattini, Fitting, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aschbacher, M, A condition for the existence of a strongly embedded subgroup, (), 509-511 · Zbl 0259.20008
[2] \scM. Aschbacher, On finite groups of component type, to appear. · Zbl 0299.20013
[3] Bender, H, Transitive gruppen gerader ordnung in denen jede involution genau einen punkt festlaβt, J. algebra, 17, 527-554, (1971) · Zbl 0237.20014
[4] Finkelstein, L, The maximal subgroups of Conway’s group C3 and Mclaughlin’s group, J. algebra, 25, 58-89, (1973) · Zbl 0263.20010
[5] Glauberman, G, On the automorphism group of a finite group having no normal subgroup of odd order, Math. Z., 93, 154-160, (1966) · Zbl 0231.20004
[6] Goldschmidt, D, 2-signalizer functors on finite groups, J. algebra, 21, 321-340, (1972) · Zbl 0253.20033
[7] Goldschmidt, D, Weakly embedded 2-local subgroups of finite groups, J. algebra, 21, 341-351, (1972) · Zbl 0265.20014
[8] Goldschmidt, D, 2-fusion in finite groups, Ann. of math., 99, 70-117, (1974) · Zbl 0276.20011
[9] Gorenstein, D, Finite groups, (1968), Harper and Row New York · Zbl 0185.05701
[10] Gorenstein, D, Centralizers of involutions in finite simple groups, () · Zbl 0202.02402
[11] Gorenstein, D; Harada, K, On finite groups with Sylow 2-subgroups of type \(Ân, n = 8, 9, 10 and 11\), J. algebra, 19, 185-227, (1971) · Zbl 0237.20020
[12] Gorenstein, D; Walter, J, The π-layer of a finite group, Illinois J. math., 15, 555-564, (1971) · Zbl 0244.20017
[13] Janko, Z, The nonexistence of a certain type of simple group, J. algebra, 18, 245-253, (1971) · Zbl 0219.20010
[14] Janko, Z; Wong, S.K, A characterization of the Mclaughlin’s simple group, J. algebra, 20, 203-225, (1972) · Zbl 0225.20009
[15] Kondo, T, On the alternating groups IV, J. math. soc. Japan, 23, 527-547, (1971) · Zbl 0216.08204
[16] Lyons, R, Evidence for a new finite simple group, J. algebra, 20, 540-569, (1972) · Zbl 0229.20009
[17] Schur, I, Über darstellung der symmetrischen und alternierenden gruppen durch gebrochenen linearen substitutionen, Crelle J., 139, 155-250, (1971) · JFM 42.0154.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.