Borsuk’s Antipodensatz für mehrwertige monotone Operatoren mit Störungen. (German) Zbl 0313.47039


47H05 Monotone operators and generalizations
47J05 Equations involving nonlinear operators (general)
Full Text: DOI


[1] Borsuk, Drei Sätze über die n-dimensionale Sphäre, Fundamenta Math. 20 pp 177– (1933)
[2] Browder, Nonlinear mappings of monotone type in Banach spaces, J. Functional Anal. 11 pp 251– (1972) · Zbl 0249.47044
[3] de Figueiredo, A Borsuk type theorem for monotone mappings, Notices Amer. Math. Sco. 17 pp 439– (1970)
[4] de Figueiredo , D. G. Gupka , C. P. Borsuk type theorems for noncompact mappings in Banach spaces
[5] Hess, On nonlinear mappings of monotone type homotopic to odd operators, J. Functional Anal. 11 pp 138– (1972) · Zbl 0244.47045
[6] Pokhozhaev, Solvability of nonlinear equations with odd operators, J. Functional Anal. Appl. 1 pp 227– (1967) · Zbl 0165.49502
[7] Wille, Verallgemeinerung der Sätze von Borsuk-Ulam und Lusternik-Schnirelmann-Borsuk auf nichtantipodische Punktepaare, Monatah. Math. 74 pp 351– (1970)
[8] Wille, Monotone Operatoren mit Störungen, Arch. Rat. Mech. Anal. 46 pp 369– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.