×

zbMATH — the first resource for mathematics

On the cohomology groups of a polarization and diagonal quantization. (English) Zbl 0313.58016

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
58A10 Differential forms in global analysis
58A30 Vector distributions (subbundles of the tangent bundles)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Robert J. Blattner, Pairing of half-form spaces, Géométrie symplectique et physique mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974) Éditions Centre Nat. Recherche Sci., Paris, 1975, pp. 175 – 186 (English, with French summary). With questions by A. Voros and J. Śniatycki and replies by the author.
[2] S. S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies, No. 15, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0158.33002
[3] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0138.42001
[4] Lars Hörmander, The Frobenius-Nirenberg theorem, Ark. Mat. 5 (1965), 425 – 432 (1965). · Zbl 0136.09104 · doi:10.1007/BF02591139 · doi.org
[5] Joseph B. Keller, Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems., Ann. Physics 4 (1958), 180 – 188. · Zbl 0085.43103 · doi:10.1016/0003-4916(58)90032-0 · doi.org
[6] Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 87 – 208. Lecture Notes in Math., Vol. 170. · Zbl 0223.53028
[7] -, Symplectic spinors, Convegno di Geomettrica Simplettica e Fisica Matematica, INDAM, Rome, 1973.
[8] -, On the definition of quantization, Colloque Symplectique, Aix-en-Provence, 1974.
[9] Hans Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155 – 158. · Zbl 0078.08104 · doi:10.2307/1970121 · doi.org
[10] L. Nirenberg, A complex Frobenius theorem, Seminars on Analytic Functions. I, Princeton Univ. Press, Princeton, N.J., 1957, pp. 172-189.
[11] E. Onofri and M. Pauri, Analyticity and quantization, Lett. Nuovo Cimento (2) 3 (1972), 35 – 42.
[12] E. Onofri and M. Pauri, Dynamical quantization, J. Mathematical Phys. 13 (1972), 533 – 543. · doi:10.1063/1.1666012 · doi.org
[13] E. Onofri, Quantization theory for homogeneous Kähler manifolds, Parma, 1974 (preprint).
[14] P. Renouard, Variétés symplectiques et quantification, Thèse, Orsay, 1969.
[15] D. J. Simms, Geometric quantization of symplectic manifolds, Internat. Sympos. Mathematical Physics, Warsaw, 1974. · Zbl 0399.58001
[16] -, Geometric quantization of the harmonic oscillator with diagonalised Hamiltonian, Proc. 2nd Internat. Colloq. Group Theoretical Methods in Physics (Catholic Univ., Nijmegen, 1973). · Zbl 0286.53032
[17] -, Metalinear structures and a geometric quantization of the harmonic oscillator, Colloque Symplectique, Aix-en-Provence, 1974.
[18] Jȩdrzej Śniatycki, Bohr-Sommerfeld conditions in geometric quantization, Rep. Mathematical Phys. 7 (1975), no. 2, 303 – 311. · Zbl 0313.53027
[19] -, Bohr-Sommerfeld quantum systems, 3rd Internat. Colloq. Group Theoretical Methods in Physics (Marseille, 1974).
[20] J. Śniatycki, Wave functions relative to a real polarization, Internat. J. Theoret. Phys. 14 (1975), no. 4, 277 – 288. · Zbl 0343.53026 · doi:10.1007/BF01807689 · doi.org
[21] -, On cohomology groups appearing in geometric quantization, Calgary, 1975 (preprint). · Zbl 0353.53019
[22] J.-M. Souriau, Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, Paris, 1970 (French). · Zbl 0186.58001
[23] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971. · Zbl 0241.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.