×

zbMATH — the first resource for mathematics

A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. (English) Zbl 0313.65070

MSC:
65L10 Numerical solution of boundary value problems involving ordinary differential equations
93B35 Sensitivity (robustness)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bard, Y.: Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM J. Numer. Anal.7, 157-186 (1970) · Zbl 0202.16904 · doi:10.1137/0707011
[2] Bauer, F. L.: Optimally scaled matrices. Num. Math.5, 73-87 (1963) · Zbl 0107.10501 · doi:10.1007/BF01385880
[3] Ben-Israel, Adi: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl.15, 243-252 (1966) · Zbl 0139.10301 · doi:10.1016/0022-247X(66)90115-6
[4] Brown, K. M., Dennis, J. E., Jr.: Derivative-free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation. Num. Math.18, 289-297 (1972) · Zbl 0235.65043 · doi:10.1007/BF01404679
[5] Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp.19, 577-583 (1965) · Zbl 0131.13905 · doi:10.1090/S0025-5718-1965-0198670-6
[6] Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Vortrag im Lehrgang ?Flugbahnoptimierung? der Carl-Cranz-Gesellschaft e. V., Okt. 1971
[7] Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems I. To be published in Num. Math., Handbook Series Approximation
[8] Businger, P., Golub, G. H.: Linear least squares solutions by Householder transformations. Num. Math.7, 269-276 (1965) · Zbl 0142.11503 · doi:10.1007/BF01436084
[9] Cauchy, A.: Méthode générale pour la résolution des systèmes d’équations simultanées. C. R. Acad. Sci. Paris25, 536-538 (1847)
[10] Deuflhard, P.: Ein Newton-Verfahren bei fastsingulärer Funktionalmatrix zur Lösung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode. Universität zu Köln, Mathematisches Institut: Dissertation, 1972
[11] Dickmanns, E. D.: Optimale dreidimensionale Gleifflugbahnen beim Eintritt in Planetenatmosphäre. Raumfahrtforschung14, Heft 3 (1970)
[12] Dickmanns, E. D.: Optimal control for synenergetic plane change. Proc. XXth Int. Astronautical Congress 597-631 (1969)
[13] Fletcher, R.: Generalized inverse methods for the best least squares solution of systems of nonlinear equations. Comp. J.10, 392-399 (1968) · Zbl 0155.19803 · doi:10.1093/comjnl/10.4.392
[14] Goldstein, A. A.: Cauchy’s Methode der Minimierung. Num. Math.4, 146-150 (1962) · Zbl 0105.10201 · doi:10.1007/BF01386306
[15] Golub, G. H., Reinsch, C.: Singular value decomposition and least squares solutions. Num. Math.14, 403-420 (1970) · Zbl 0181.17602 · doi:10.1007/BF02163027
[16] Greenstadt, J.: On the relative efficiencies of gradient methods. Math. Comp.21, 360-367 (1967) · Zbl 0159.20305 · doi:10.1090/S0025-5718-1967-0223073-7
[17] Householder, A. S.: Principles of numerical analysis. New York: McGraw-Hill 1953 · Zbl 0051.34602
[18] Kantorovi?, L., Akilow, G.: Functional analysis in normed spaces. Moscow: Fizmatgiz 1959. German Translation: Berlin: Akademie-Verlag 1964
[19] Keller, H. B.: Numerical methods for two-point boundary-value problems. London: Blaisdell 1968 · Zbl 0172.19503
[20] Kowalik, J., Osborne, M. R.: Methods for unconstrained optimization problems. New York: American Elsevier Publ. Comp., Inc. 1968 · Zbl 0304.90099
[21] Levenberg, K. A.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math.2, 164-168 (1944) · Zbl 0063.03501
[22] Marquardt, D. W.: An algorithm for least-squares-estimation of nonlinear parameters. SIAM J. Appl. Math.11, 431-441 (1963) · Zbl 0112.10505 · doi:10.1137/0111030
[23] Meyer, G. H.: On solving nonlinear equations with a one-parameter operator imbedding. University of Maryland, Computer Science Center: Techn. Rep. 67-50 (Sept. 1967)
[24] Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York-London: Academic Press 1970 · Zbl 0241.65046
[25] Osborne, M. R.: On shooting methods for boundary value problems. J. Math. Anal. Appl.27, 417-433 (1969) · Zbl 0177.20402 · doi:10.1016/0022-247X(69)90059-6
[26] Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc.51, 406-413 (1955) · Zbl 0065.24603 · doi:10.1017/S0305004100030401
[27] Pesch, H.-J.: Numerische Berechnung optimaler Steuerungen mit Hilfe der Mehrzielmethode dokumentiert am Problem der Rückführung eines Raumgleiters unter Berücksichtigung von Aufheizungsbegrenzungen. Universität Köln, Mathematisches Institut: Diplomarbeit, 1973
[28] Powell, M. J. D.:A Fortran subroutine for solving systems of non-linear algebraic equations. A.E.R.E. Rep. 5947, Harwell (1968)
[29] Rheinboldt, W. C.: Local mapping relations and global implicit function theorems. University of Maryland, Computer Science Center: Techn. Rep. 68-52 (Febr. 1968)
[30] Rosenbloom, P. C.: The method of steepest descent. Proc. Symp. Appl. Math. AMS6, 127-176 (1956) · Zbl 0073.33702
[31] Stoer, J.: Einführung in die Numerische Mathematik I. Heidelberger Taschenbuch 105. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0245.65001
[32] Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Heidelberger Taschenbuch 114. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0257.65001
[33] Wilkinson, J. H.: Rounding errors in algebraic processes. London: Her Majesty’s Stationary Office 1963 (German translation: Rundungsfehler. Heidelbeger Taschenbuch 44. Berlin-Heidelberg-New York: Springer 1969)
[34] Zimmermann, U.: Numerische Berechnung optimaler Steuerungen unter Verwendung der Mehrzielmethode bei mehrfacher Beschränkung im Phasenraum mit Beispielen aus der Flugbahnoptimierung. Universität Köln, Mathematisches Institut: Diplomarbeit, 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.