The hyperelliptic locus with special reference to characteristic two. (English) Zbl 0314.14009


14H10 Families, moduli of curves (algebraic)
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
14D20 Algebraic moduli problems, moduli of vector bundles
Full Text: DOI EuDML


[1] Arbarello, E.: Thesis, Columbia University, 1974
[2] Dieudonn?, J., Grothendieck, A.: El?ments de G?om?trie Alg?brique (EGA), I?IV, Publ. Math. de l’I.H.E.S., no. 4, 8,..., 32
[3] Fulton, W.:Algebraic curves. New York: Benjamin 1969 · Zbl 0181.23901
[4] Geyer, W. D.: Invarianten bin?rer Formen, Classification of Algebraic Varieties and Compact Manifolds. Springer Lecture Notes412 (1974), 36-69. Berlin, Heidelberg, New York: Springer 1974
[5] Igusa, J.-I.: Arithmetic variety of moduli for genus two. Ann. Math.72, 612-649 (1960) · Zbl 0122.39002
[6] L?nsted, K.: Some finiteness theorems for smooth families of hyperelliptic curves. K?benhavn Universitet Matematisk Institut, Preprint Series nr. 9, 1974
[7] Oort, F.: Fine and coarse moduli schemes are different. University of Amsterdam, Dept. Math. Report 74-10, 1974 · Zbl 0317.14012
[8] Rauch, H. E.: Weierstrass points, branch points, and moduli of Riemann surfaces. Comm. Pure Appl. Math.12, 543-560 (1959) · Zbl 0091.07301
[9] Segre, B.: Sui moduli delle curve algebriche. Annal. Mat. Pura e Appl.7, 71-102 (1930) · JFM 55.1001.03
[10] Serre, J.-P.:Groups alg?briques et corps de classes. Paris: Hermann 1959
[11] Walker, R. J.:Algebraic Curves. New York: Dover 1962 · Zbl 0103.38202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.