×

zbMATH — the first resource for mathematics

A semilinear equation in \(L^1(\mathbb R^N)\). (English) Zbl 0314.35077

MSC:
35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions)
47H05 Monotone operators and generalizations
47F05 General theory of partial differential operators
35B99 Qualitative properties of solutions to partial differential equations
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] H. Brezis , Solutions of variational inequalities with compact support , Uspekhi Mat. Nauk. , 129 ( 1974 ), pp. 103 - 108 . MR 481460 | Zbl 0296.35025 · Zbl 0296.35025
[2] H. Brezis - W. Strauss , Semilinear elliptic equations in L1 , J. Math. Soc. Japan , 25 ( 1973 ), pp. 565 - 590 . MR 336050 | Zbl 0278.35041 · Zbl 0278.35041
[3] A. Friedman , Partial Differential Equations , Holt, Rinehart and Winston, Inc. , New York , 1969 . MR 445088 | Zbl 0224.35002 · Zbl 0224.35002
[4] Y. Konishi , Semi-linear Poisson’s Equations , Proc. Japan Acad. , 49 ( 1973 ), pp. 100 - 105 . Article | MR 331134 | Zbl 0267.47039 · Zbl 0267.47039
[5] L. Nirenberg - H.F. Walker , The null spaces of elliptic partial differential operators in RN , J. Math. Anal. Appl ., 42 ( 1973 ), pp. 271 - 301 . MR 320821 | Zbl 0272.35029 · Zbl 0272.35029
[6] R. Redheffer , Nonlinear differential inequalities and functions of compact support , to appear. MR 407450 | Zbl 0361.35029 · Zbl 0361.35029
[7] G. Stampacchia , Equations Elliptiques du Second Ordre à Coefficients Discontinus , Les Presses de l’Université de Montreal , Montreal , 1966 . MR 251373 | Zbl 0151.15501 · Zbl 0151.15501
[8] E. Stein , Singular Integrals and Differentiability Properties of Functions , Princeton University Press , Princeton , 1970 . MR 290095 | Zbl 0207.13501 · Zbl 0207.13501
[9] E. Stein - G. Weiss , Introduction to Fourier Analysis on Euclidean Spaces , Princeton University Press , Princeton , 1971 . MR 304972 | Zbl 0232.42007 · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.