×

zbMATH — the first resource for mathematics

Non-analytic local spectral properties in several variables. (English) Zbl 0314.47009

MSC:
47A60 Functional calculus for linear operators
47A10 Spectrum, resolvent
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Albrecht E. J.: Funktionalkalküle in mehreren Veränderlichen. Dissertation zur Erlangung des Doktorgrades, Johannes Gutenberg-Universität zu Mainz, 1972.
[2] Albrecht E. J.: Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen. · Zbl 0294.47013
[3] Colojoară I., Foiaş C.: Generalized spectral operators. Gordon and Breach, Science Publishers, New York, 1968. · Zbl 0189.44201
[4] Dunford N., Schwartz J.: Linear operators. Part II: Spectral theory, Interscience Publishers, New York 1963, Part III: Spectral operators, Wiley-Interscience, New York, 1971. · Zbl 0128.34803
[5] Foiaş C., Vasilescu F.-H.: Non-analytic local functional calculus. Czech. Math. J. 24 (99) 1974, 270-283. · Zbl 0314.47008
[6] Hörmander L.: Linear partial differential operators. Springer-Verlag, 1963. · Zbl 0108.09301
[7] Pták V., Vrbová P.: On the spectral function of a normal operator. Czech. Math. J. 23 (98) 1973, 615-616. · Zbl 0268.47025
[8] Taylor E. J.: A joint spectrum for several commuting operators. J. Functional Anal., 6 (1970), 172-191. · Zbl 0233.47024
[9] Trèves F.: Topological vector spaces, distributions and kernels. Academic Press, New York, 1967. · Zbl 0171.10402
[10] Vasilescu F.-H.: Residual properties for closed operators on Fréchet spaces. Illinois J. Math., 15 (1971), 377-386. · Zbl 0213.14306
[11] Vrbová P.: The structure of maximal spectral spaces of generalized scalar operators. Czech. Math. J. 23 (98) 1973, 493-496.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.