Pták, Vlastimil Concerning the rate of convergence of Newton’s process. (English) Zbl 0314.65023 Commentat. Math. Univ. Carol. 16, 699-705 (1975). Summary: The author establishes an explicit formula for the partial sums \(x+\omega(x)+\ldots+\omega^(n)x\) where \(\omega\) is the rate of convergence obtained by the author [Numer. Math. 25, 279–285 (1976; Zbl 0304.65037)] for the Newton’s process \(\omega(x) =\frac{x^2}{2(x^2+d)^{1/2}}\). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents MSC: 65H05 Numerical computation of solutions to single equations 65H10 Numerical computation of solutions to systems of equations 65J05 General theory of numerical analysis in abstract spaces Keywords:nondiscrete mathematical induction; rate of convergence; Newton process Citations:Zbl 0304.65037 × Cite Format Result Cite Review PDF Full Text: EuDML