×

zbMATH — the first resource for mathematics

Uniqueness and stability in linear viscoelasticity. (English) Zbl 0314.73035

MSC:
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74E10 Anisotropy in solid mechanics
74B99 Elastic materials
74H99 Dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. C. Murray andM. H. Protter,The Asymptotic Behaviour of Solutions of Second Order Systems of Partial Differential Equations, J. Diff. Equations13, 57–80 (1973). · Zbl 0257.35017 · doi:10.1016/0022-0396(73)90032-6
[2] A. C. Murray,Uniqueness and Continuous Dependence for the Equations of Elastodynamics without Strain Energy Function, Arch. Rat. Mech. Anal.47, 195–204 (1972). · Zbl 0273.73009 · doi:10.1007/BF00250626
[3] R. N. Hills andR. J. Knops,Continuous Dependence for the Compressible Linearly Viscous Fluid, Arch. Rat. Mech. Anal.51, 54–59 (1973). · Zbl 0267.76031 · doi:10.1007/BF00275992
[4] C. E. Beevers,On the Stability of the Equations of a Binary Mixture of Compressible Newtonian Fluids, Letters in Appl. Engrg. Sci.1, 543–553 (1973).
[5] C. E. Beevers,Hölder Stability in Anisotropic Viscoelasticity, IUTAM Symposium on Viscoelasticity, Gothenburg, Sweden (1974) (to appear). · Zbl 0289.73007
[6] F. John,Continuous Dependence on Data for Solutions of Partial Differential Equations with a Prescribed Bound, Comm. Pure Appl. Math.13, 551–585 (1960). · Zbl 0097.08101 · doi:10.1002/cpa.3160130402
[7] M. E. Gurtin andE. Sternberg,On the Linear Theory of Viscoelasticity, Arch. Rat. Mech. Anal.11, 291–356 (1962). · Zbl 0107.41007 · doi:10.1007/BF00253942
[8] W. S. Edelstein andM. E. Gurtin,Uniqueness Theorems in the Linear Dynamic Theory of Anisotropic Viscoelastic Solids, Arch. Rat. Mech. Anal.17, 47–60 (1965). · Zbl 0125.13604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.