On the construction of division chains in algebraic number rings, with applications to \(SL_2\). (English) Zbl 0315.12001


11R04 Algebraic numbers; rings of algebraic integers
20G30 Linear algebraic groups over global fields and their integers
Full Text: DOI


[1] Chatland H., Canadian J. of Math 2 pp 284– (1950) · Zbl 0037.30802 · doi:10.4153/CJM-1950-026-7
[2] Cohn P.M., Publ.Math.IHES 30 (1966)
[3] Cooke G., J. Für die reine und angew. Math
[4] Goldstein, L.J. Some remarks on arithmetic density questions. Proceedings of Symposia in Pure Math. Vol. XXIV, pp.103–110. AMS.
[5] Hasse H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper (1965) · doi:10.1007/978-3-662-39429-8
[6] Hooley C., J. für die reine und angewandte Math 225 pp 209– (1967)
[7] Lang S., Inventiones Math 12 pp 337– (1971) · Zbl 0217.04301 · doi:10.1007/BF01403312
[8] Narkiewicz W., Elementary and Analytic Theory of Numbers (1974) · Zbl 0276.12002
[9] Vaserŝtein L.N., Mat. Sbr 89 (131) (1972)
[10] Weinberger, P.J. 1973.On Euclidean rings of algebraic integers, Vol. XXIV, 321–332. AMS.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.