zbMATH — the first resource for mathematics

On Petri’s analysis of the linear system of quadrics through a canonical curve. (English) Zbl 0315.14010

14H10 Families, moduli of curves (algebraic)
14C20 Divisors, linear systems, invertible sheaves
Full Text: DOI EuDML
[1] Andreotti, A., Mayer, A.: On period relations for abelian integrals on algebraic curves. Annali di Scuola Norm. di Pisa Series 3, Vol.21, 189-238 (1967) · Zbl 0222.14024
[2] Enriques, F.: Sulle curve canoniche di genere p dello Spazio ap-1 dimensioni. Rend. dell’Acc. di Bologna, vol. XXIII pp. 80-82 (1919)
[3] Kempf, G.: On the geometry of a theorem of Riemann. (To appear in Ann. of Math.)
[4] Maroni, A.: Le serie lineari speciali sulle curve trigonali, Ann. di Mat. s. IV, vol.25, 341-354 (1946) · Zbl 0061.35407 · doi:10.1007/BF02418090
[5] Martens, H. H.: On the varieties of special divisors on a curve. Journal f. Math.227, 111 (1967) · Zbl 0172.46301
[6] Mumford, D.: Varieties defined by quadratic equations. C.I.M.E. Varenna, 1969 · Zbl 0169.23301
[7] Mumford, D.: Abelian varieties. Oxford University Press, 1970 · Zbl 0223.14022
[8] Petri, K.: Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen. Math. Ann.88, 242 (1922) · JFM 49.0264.02 · doi:10.1007/BF01579181
[9] Saint-Donat, B.: Projective models ofK-3 surfaces. (To appear in Amer. Journal of Math.)
[10] Saint-Donat, B.: Sur les équations définissant une courbe algébrique. Notes aux Compte-Rendus de l’Acc. des Sciences de Paris, t. 274, pp. 324-327 et pp. 487-489 1972
[11] Serre, J. P.: Groupes algébriques et corps de classes. Publication de l’Université de Nancago. Paris: Hermann 1959
[12] Shokourov, V. V.: The Noether-Enriques theorem on canonical curves. Mat. Sbornik, vol.86, (3) 367 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.