Luna, D. Adherences d’orbite et invariants. (French) Zbl 0315.14018 Invent. Math. 29, 231-238 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 70 Documents MSC: 14M99 Special varieties 14L99 Algebraic groups 57S99 Topological transformation groups 20G20 Linear algebraic groups over the reals, the complexes, the quaternions 15A72 Vector and tensor algebra, theory of invariants PDF BibTeX XML Cite \textit{D. Luna}, Invent. Math. 29, 231--238 (1975; Zbl 0315.14018) Full Text: DOI EuDML References: [1] Birkes, D.: Orbits of linear algebraic groups. Ann. of Math.93, 459-475 (1971) · Zbl 0212.36402 · doi:10.2307/1970884 [2] Kostant, B.: Lie group representations on polynomial rings. Amer. J. Math.85, 327-404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130 [3] Luna, D.: Slices étales, Bull. Soc. math. France. Mémoire33, 81-105 (1973) [4] Luna, D., Richardson, R. W.: A generalization of the Chevelley restriction theorem. A paraitre [5] Mumford, D.: Geometric invariant theory. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0147.39304 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.