×

zbMATH — the first resource for mathematics

Harmonic analysis on real reductive groups. I: The theory of the constant term. (English) Zbl 0315.43002

MSC:
43A05 Measures on groups and semigroups, etc.
43-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to abstract harmonic analysis
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel, A.; Tits, J., Groupes réductifs, Inst. hautes études sci. publ. math., 27, 55-150, (1965) · Zbl 0145.17402
[2] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. amer. math. soc., 75, 185-243, (1953) · Zbl 0051.34002
[3] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. math., 78, 564-628, (1956) · Zbl 0072.01702
[4] Harish-Chandra, The characters of semisimple Lie groups, Trans. amer. math. soc., 83, 98-163, (1956) · Zbl 0072.01801
[5] Harish-Chandra, Fourier transforms on a semisimple Lie algebra I, Amer. J. math., 79, 193-257, (1957) · Zbl 0077.25205
[6] Harish-Chandra, Fourier transforms on a semisimple Lie algebra II, Amer. J. math., 79, 653-686, (1957) · Zbl 0079.32901
[7] Harish-Chandra, A formula for semisimple Lie groups, Amer. J. math., 79, 733-760, (1957) · Zbl 0080.10201
[8] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. math., 80, 241-310, (1958) · Zbl 0093.12801
[9] Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. math., 86, 534-564, (1964) · Zbl 0161.33804
[10] Harish-Chandra, Some results on an invariant integral on a semisimple Lie algebra, Ann. of math., 80, 551-593, (1964) · Zbl 0152.13401
[11] Harish-Chandra, Invariant eigendistributions on a semisimple Lie algebra, Inst. hautes études sci. publ. math., 27, 5-54, (1965) · Zbl 0199.46401
[12] Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. amer. math. soc., 119, 457-508, (1965) · Zbl 0199.46402
[13] Harish-Chandra, Two theorems on semisimple Lie groups, Ann. of math., 83, 74-128, (1966) · Zbl 0199.46403
[14] Harish-Chandra, Discrete series for semisimple Lie groups I, Acta math., 113, 241-318, (1965) · Zbl 0152.13402
[15] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta math., 116, 1-111, (1966) · Zbl 0199.20102
[16] Harish-Chandra, Automorphic forms on semisimple Lie groups, () · Zbl 0085.10401
[17] Harish-Chandra, Some applications of the Schwartz space of a semisimple Lie group, () · Zbl 0212.15102
[18] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. amer. math. soc., 78, 529-551, (1970) · Zbl 0212.15101
[19] Harish-Chandra, On the theory of the Eisenstein integral, (), 123-149 · Zbl 0115.10801
[20] Helgason, S., Differential geometry and symmetric spaces, (1962), Academic Press New York · Zbl 0122.39901
[21] Hörmander, L., Linear partial differential operators, (1969), Springer-Verlag New York · Zbl 0177.36401
[22] Mostow, G.D., Self-adjoint groups, Ann. of math., 62, 44-55, (1955) · Zbl 0065.01404
[23] Warner, G., Harmonic analysis on semi-simple Lie groups II, (1972), Springer-Verlag New York · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.