×

zbMATH — the first resource for mathematics

Nonlinear equations with noninvertible linear part. (English) Zbl 0315.47038

MSC:
47J05 Equations involving nonlinear operators (general)
34K05 General theory of functional-differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
PDF BibTeX Cite
Full Text: EuDML
References:
[1] S. Bancroft J. K. Hale, D. Sweet: Alternative problems for nonlinear functional equations. J. Diff. Eq. 4, 1968, 40-56. · Zbl 0159.20001
[2] L. Cesari: Functional analysis and Galerkin’s method. Michigan Math. J. 11, 1964, 385-414. · Zbl 0192.23702
[3] J. Dieudonné: Foundations of Modern Analysis. Academic Press 1960. · Zbl 0100.04201
[4] S. Fučík: Fredholm alternative for nonlinear operators in Banach spaces and its applications to differential and integral equations. Čas. pěst. mat. 96, 1971, 371 - 390. · Zbl 0221.47042
[5] S. Fučík: Note on Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae 12, 1971, 213-226. · Zbl 0215.21201
[6] S. Fučík: Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation.
[7] S. Fučík M. Kučera, J. Nečas: Ranges of nonlinear asymptotically linear operators.
[8] S. Fučík J. Nečas J. Souček, V. Souček: Spectral Analysis of Nonlinear Operators. Lecture Notes in Mathematics. Springer-Verlag, 1973. · Zbl 0268.47056
[9] G. B. Gustafson, K. Schmitt: Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations. J. Diff. Eq. 12, 1972, 129-147. · Zbl 0227.34017
[10] W. S. Hall: The bifurcation of solutions in Banach spaces. Trans. Amer. Math. Soc. 161, 1971, 207-217. · Zbl 0225.47005
[11] E. A. Landesman, A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 1970, 609-623. · Zbl 0193.39203
[12] J. Locker: An existence analysis for nonlinear equations in Hilbert space. Trans. Amer. Math. Soc. 128, 1967, 403-413. · Zbl 0156.15802
[13] J. Mawhin: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. Rapport no 23, juin 1972, Séminaire de Mathématique Pure, Institut de Mathématique Pure et Appliqée, Université Catholique de Louvain. · Zbl 0244.47049
[14] J. Mawhin: Boundary value problems for nonlinear second order vector differential equations. Rapport no 47, juin 1972, Séminaires de mathématique appliquée et mécanique, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain. · Zbl 0301.34019
[15] J. Nečas: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14, 1973, 63 - 72.
[16] Z. Nehari: On a class of second order differential equations. Trans. Amer. Math. Soc. 95, 1960, 101-123. · Zbl 0097.29501
[17] L. Nirenberg: Generalized degree and nonlinear problems, ”Contributions to Nonlinear Analysis”. Edited by E. H. Zarantonello, Proceedings of a Symposium Constructed by the Mathematics Research Center, the University of Wisconsin, Madison April 12–14, 1971, Academic Press 1971, pp. 1 - 9.
[18] K. Schmitt: A nonlinear boundary value problem. J. Diff. Eq. 7, 1970, 527-537. · Zbl 0198.12301
[19] J. Schwartz: Nonlinear Functional Analysis. Gordon and Breach, New York, 1969. · Zbl 0203.14501
[20] M. Sova: Abstract semilinear equations with small nonlinearities. Comment. Math. Univ. Carolinae 12, 1971, 785-805. · Zbl 0235.47034
[21] M. Sova: Abstract semilinear equations with small nonlinearities. Proceedings of Equadiff III, Czechoslovak Conference on Differential Equations and their Applications, Brno 1972, J. E. Purkyně University - Brno 1973, pp. 71 - 79.
[22] S. A. Williams: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. Diff. Eq. 8, 1970, 580-586. · Zbl 0209.13003
[23] K. Yosida: Functional Analysis. Springer Verlag, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.