×

zbMATH — the first resource for mathematics

Center of a bounded lattice. (English) Zbl 0316.06003

MSC:
06C15 Complemented lattices, orthocomplemented lattices and posets
06B23 Complete lattices, completions
06C05 Modular lattices, Desarguesian lattices
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BIRKHOFF G.: Lattice theory, third edition. Amer. Math. Soc. Colloquium Publications Vol. XXV, Providence 1967. · Zbl 0153.02501
[2] FOULIS D. J.: A note on orthomodular lattices. Portug. Math., 21, 1962, 65-72. · Zbl 0106.24302
[3] HOLLAND, Jr. S. S.: A Radon-Nikodym Theorem in dimension lattices. Trans. Amer. Math. Soc, 108, 1963, 66-87. · Zbl 0118.02501
[4] JAKUBÍK J.: Relácie kongruentnosti a slabá projektívnos\? vo zväzoch. Časop. pěstov. mat., 80, 1955, 206-216.
[5] JAKUBÍK J.: Centrum nekonečne distributívnych zväzov. Mat. fyz. čas. 8, 1957, 116-120.
[6] JAKUBÍK J.: Center of a complete lattice. Czechosl. Math. J. 23, 1973, 125-138. · Zbl 0262.06006
[7] JANOWITZ M. F.: The center of a complete relatively complemented lattice is a complete sublattice. Proc. Amer. Math. Soc., 18, 1967, 189-190. · Zbl 0154.01002
[8] KAPLANSKY J.: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math., 61, 1955, 524 - 541. · Zbl 0065.01801
[9] MAEDA S.: On relatively semi-orthocomplemented lattices. Hiroshima Univ. J. Sci. Ser. A 24, 1960, 155-161. · Zbl 0178.33701
[10] von NEUMANN J.: Continuous geometry. Princeton Univ. Press, N. Y., 1960. · Zbl 0171.28003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.