zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. (English) Zbl 0316.10023

MSC:
11L03Trigonometric and exponential sums, general
11M35Hurwitz and Lerch zeta functions
11B39Fibonacci and Lucas numbers, etc.
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, Milton; Stegun, Irene A.: Handbook of mathematical functions. (1965) · Zbl 0171.38503
[2] Ankeny, N. C.; Artin, E.; Chowla, S.: The class number of real quadratic fields. Ann. math. 56, 479-493 (1952) · Zbl 0049.30605
[3] Apostol, Tom M.: Euler’s \phi-function and separable Gauss sums. Proc. amer. Math. soc. 24, 482-485 (1970) · Zbl 0188.34001
[4] Apostol, Tom M.: Dirichlet L-functions and primitive characters. Proc. amer. Math. soc. 31, 384-386 (1972) · Zbl 0239.10023
[5] Ayoub, Raymond: 4th ed. An introduction to the analytic theory of numbers. An introduction to the analytic theory of numbers (1963) · Zbl 0128.04303
[6] Berndt, Bruce C.: Identities involving the coefficients of a class of Dirichlet series. Ph.d. thesis (1966)
[7] Berndt, Bruce C.: Identities involving the coefficients of a class of Dirichlet series. II. Trans. amer. Math. soc. 137, 361-374 (1969) · Zbl 0175.32802
[8] Berndt, Bruce C.: Identities involving the coefficients of a class of Dirichlet series. III. Trans. amer. Math. soc. 146, 323-348 (1969) · Zbl 0191.33003
[9] Berndt, Bruce C.: Identities involving the coefficients of a class of Dirichlet series. V. Trans. amer. Math. soc. 160, 139-156 (1971) · Zbl 0228.10024
[10] Berndt, Bruce C.: The Voronoi summation formula. Lecture notes in mathematics, 21-36 (1972)
[11] Carlitz, L.: Arithmetic properties of generalized Bernoulli numbers. J. reine angew. Math. 202, 174-182 (1959) · Zbl 0125.02202
[12] Chandrasekharan, K.; Narasimhan, Raghavan: Hecke’s functional equation and arithmetical identities. Ann. math. 74, 1-23 (1961) · Zbl 0107.03702
[13] Chowla, S.: On some formulae resembling the Euler-Maclaurin sum formula. Norske vid. Selsk. forh. (Trondheim) 34, 107-109 (1961) · Zbl 0219.10045
[14] Gradshteyn, I. S.; Ryzhik, I. M.: 4th ed. Table of integrals, series and products. Table of integrals, series and products (1963) · Zbl 0918.65002
[15] English transl., Academic Press, New York, 1965.
[16] Guinand, A. P.: On Poisson’s summation formula. Ann. math. 42, 591-603 (1941) · Zbl 0025.33802
[17] Guinand, A. P.: Concordance and the harmonic analysis of sequences. Acta math. 101, 235-271 (1959) · Zbl 0085.30102
[18] Hardy, G. H.: A further note on Ramanujan’s arithmetical function ${\tau}$(n). Proc. Cambridge philos. Soc. 34, 309-315 (1938) · Zbl 0019.05102
[19] Hardy, G. H.; Landau, E.: The lattice points of a circle. Proc. roy. Soc. A 105, 244-258 (1924) · Zbl 50.0114.01
[20] Landau, E.: 2nd ed. Vorlesungen über zahlentheorie. Vorlesungen über zahlentheorie 2 (1947)
[21] Leopoldt, Heinrich-Wolfgang: Eine verallgemeinerung der bernoullischen zahlen. Abh. math. Sem. univ. Hamburg 22, 131-140 (1958) · Zbl 0080.03002
[22] Lipschitz, R.: Untersuchung der eigenschaften einer gattung von unendlichen reihen. J. reine angew. Math. 105, 127-156 (1889)
[23] J. Barkley Rosser and Lowell Schoenfeld, Approximation of the Riemann zeta-function (to appear). · Zbl 0295.10036
[24] Titchmarsh, E. C.: 2nd ed. The theory of functions. The theory of functions (1939) · Zbl 65.0302.01
[25] Titchmarsh, E. C.: The theory of the Riemann zeta-function. (1951) · Zbl 0042.07901
[26] Voronoï, M. G.: Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. de l’école norm. Sup. 21, No. 3, 459-533 (1904)
[27] Watson, G. N.: 2nd ed. A treatise on the theory of Bessel functions. A treatise on the theory of Bessel functions (1944)