Examples of \(\mathcal L_p\) spaces \((1<p\neq 2<\infty)\). (English) Zbl 0316.46018


46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI


[1] W. B. Johnson and E. Odell,Subspaces of L p which embed into l p , Compositio Math.28 (1974), 37–49. · Zbl 0282.46020
[2] J. Lindenstrauss,A remark on 1 spaces, Israel J. Math.8 (1970), 80–82. · Zbl 0197.38703
[3] J. Lindenstrauss and Pelczynski,Absolutely summing operators in p spaces and their applications, Studia Math.29 (1968), 275–326. · Zbl 0183.40501
[4] J. Lindenstrauss and A. Pelczynski,Contributions to the theory of the classical Banach spaces, J. Functional Analysis8 (1971), 225–249. · Zbl 0224.46041
[5] J. Lindenstrauss and H. P. Rosenthal,The p spaces, Israel J. Math.7 (1969), 325–349. · Zbl 0205.12602
[6] J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces, Springer, 1973. · Zbl 0259.46011
[7] B. Maurey and G. Pisier,Séries de variables aléatoires vectorielles indépendantes et propriétés géimétriques des espaces de Banach (to appear).
[8] H. P. Rosenthal,On the subspaces of L p (p>2)spanned by sequences of independent random variables, Israel J. Math.8 (1970), 273–303. · Zbl 0213.19303
[9] H. P. Rosenthal,On the span in L p of sequences of independent random variables (II), Proc. of the 6th Berkeley Symp. on Prob. and Stat., Berkeley, Calif., 1971, Vol. II, pp. 149–167.
[10] J. Y. T. Woo,On a class of universal modular sequence spaces, Israel J. Math.20 (1975), 193–215. · Zbl 0311.46009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.