×

zbMATH — the first resource for mathematics

Structure of homogeneous Riemann spaces with zero Ricci curvature. (English. Russian original) Zbl 0316.53041
Funct. Anal. Appl. 9, 97-102 (1975); translation from Funkts. Anal. Prilozh. 9, No. 2, 5-11 (1975).

MSC:
53C30 Differential geometry of homogeneous manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Yano and S. Bochner, Curvature and Betti Numbers, Princeton University Press (1953).
[2] J. Hano, ”On Kählerian homogeneous spaces of unimodular groups,” Amer. J. Math.,79, 885-900 (1957). · Zbl 0096.16203 · doi:10.2307/2372440
[3] D. V. Alekseevskii, ”Riemann spaces with extraordinary holonomy groups,” Funktsional. Analiz i Ego Prilozhen.,2, No. 2, 1-10 (1968). · Zbl 0174.45203 · doi:10.1007/BF01075356
[4] D. V. Alekseevskii, ”Compact quaternion spaces,” Funktsional. Analiz i Ego Prilozhen.,2, No. 2, 11-21 (1968).
[5] Y. Guivarch, ”Groupes de Lie a croissance polynomiale,” C.R. Acad. Sci. Paris,271, No. 4, 237-239 (1970). · Zbl 0203.33004
[6] A. S. Shvarts, ”A solid invariant of coverings,” DAN SSSR,105, No. 1, 32-34 (1955). · Zbl 0066.15903
[7] J. Milnor, ”A note on curvature and fundamental groups,” J. Diff. Geom.,2, No. 1, 1-7 (1968). · Zbl 0162.25401
[8] J. A. Wolf, ”Growth of the finitely generated solvable groups and curvature of Riemannian manifolds,” J. Diff. Geom.,2, No. 4, 421-446 (1968). · Zbl 0207.51803
[9] P. Günter, ”Einige sätze über das volumenelement eines Riemannschen raumes,” Publ. Math. Debrecen,7, Nos. 1-4, 78-93 (1960). · Zbl 0097.37304
[10] G. de Rham, ”Sur la reductibilité d’un espace de Riemann,” Comm. Math. Helv.,26, No. 4, 328-343 (1952). · Zbl 0048.15701 · doi:10.1007/BF02564308
[11] A. Weil, Integration in Topological Groups and Its Applications [Russian translation], IL, Moscow (1950).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.