×

zbMATH — the first resource for mathematics

On the Lefschetz number for iterates of continuous mappings. (English) Zbl 0316.55006

MSC:
55M20 Fixed points and coincidences in algebraic topology
55M25 Degree, winding number
55M35 Finite groups of transformations in algebraic topology (including Smith theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albrecht Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1 – 8. · Zbl 0135.23101 · doi:10.1016/0040-9383(65)90044-3 · doi.org
[2] Christian C. Fenske and Heinz-Otto Peitgen, Repulsive fixed points of multivalued transformations and the fixed point index, Math. Ann. 218 (1975), no. 1, 9 – 18. · Zbl 0297.55005 · doi:10.1007/BF01350064 · doi.org
[3] E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138 – 147. · Zbl 0046.16603
[4] -, Periodic maps via Smith theory, Seminar on Transformation Groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N.J., 1960, Chap. III.
[5] Benjamin Halpern, Fixed points for iterates, Pacific J. Math. 25 (1968), 255 – 275. · Zbl 0157.30201
[6] H. O. Peitgen, Asymptotic fixed-point theorems and stability, J. Math. Anal. Appl. 47 (1974), 32 – 42. · Zbl 0284.54027 · doi:10.1016/0022-247X(74)90034-1 · doi.org
[7] Michael J. Powers, Lefschetz fixed point theorems for a new class of multi-valued maps, Pacific J. Math. 42 (1972), 211 – 220. · Zbl 0244.55007
[8] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[9] Heinrich Steinlein, Ein Satz über den Leray-Schauderschen Abbildungsgrad, Math. Z. 126 (1972), 176 – 208 (German). · Zbl 0223.47023 · doi:10.1007/BF01122324 · doi.org
[10] P. P. Zabreĭko and M. A. Krasnosel\(^{\prime}\)skiĭ, Iterations of operators, and fixed points, Dokl. Akad. Nauk SSSR 196 (1971), 1006 – 1009 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.