zbMATH — the first resource for mathematics

Approximation of an elliptic boundary value problem with unilateral constraints. (English) Zbl 0316.65024

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A15 Spline approximation
35J20 Variational methods for second-order elliptic equations
41A25 Rate of convergence, degree of approximation
Full Text: EuDML
[1] [1] BREZIS H. and STAMPACCHIA G., Sur La Régularité de La Solution d’Inéquations Elliptiques, Bulletin Soc. Math. France, vol. 96, 1968, pp. 153-180. Zbl0165.45601 MR239302 · Zbl 0165.45601 · numdam:BSMF_1968__96__153_0 · eudml:87105
[2] FALK R. S., Error Estimates for the Approximation of a Class of Variational Inequalities, Math. of Computation, vol. 28, 1974, pp. 963-971. Zbl0297.65061 MR391502 · Zbl 0297.65061 · doi:10.2307/2005358
[3] LEWY H. and STAMPACCHIA G., On the Regularity of the Solution of a Variational Inequality, Communications on Pure and Applied Mathematics, vol. 22, 1969, pp. 153-188. Zbl0167.11501 MR247551 · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[4] LIONS J. L. and STAMPACCHIA G., Variational Inequalities, Communications on Pure and Applied Mathematics, vol. 20, 1967, pp. 493-519. Zbl0152.34601 MR216344 · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[5] MOSCO U. and STRANG G., One-Sided Approximation and Variational Inequalities Bulletin Amer. math. Soc, vol.80, 1974, pp. 308-312. Zbl0278.35026 MR331818 · Zbl 0278.35026 · doi:10.1090/S0002-9904-1974-13477-4
[6] NITSCHE J., Lineare Spline-Funktionen und die Methoden vonRitz fur elliptische Randwertproblem, Archive for Rational Mechanics and Analysis, vol. 36, 1970, pp. 348-355. Zbl0192.44503 MR255043 · Zbl 0192.44503 · doi:10.1007/BF00282271
[7] NITSCHE J., Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilraümen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1970/71), pp.9-15. Zbl0229.65079 MR341903 · Zbl 0229.65079 · doi:10.1007/BF02995904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.