×

zbMATH — the first resource for mathematics

Sur la méthode des éléments finis hybrides pour le problème biharmonique. (French) Zbl 0316.65029

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aubin, J. P. [1]: Approximation of elliptic boundary-value problems. New York: Wiley 1972 · Zbl 0248.65063
[2] Babu?ka, I. [1]: The rate of convergence for the finite element method. SIAM J. Numer. Anal.8, 304-315 (1971) · Zbl 0232.65080
[3] Babu?ka, I. [2]: Error bounds for finite element method. Numer. Math.16, 322-333 (1971) · Zbl 0214.42001
[4] Babu?ka, I. [3]: The finite element method with lagrangian multipliers. Numer. Math.20, 179-192 (1973) · Zbl 0258.65108
[5] Bensoussan, A., Lions, J. L., Temam, R. [1]: Sur les méthodes de décomposition, de décentralisation et de coordination, et applications. Cahier N. 11 de l’I.R.I.A. Paris: Rocquencourt 1972 · Zbl 0275.90042
[6] Bramble, J. H., Hilbert, R. S. [1]: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 112-124 (1970) · Zbl 0201.07803
[7] Bramble, J. H., Hilbert, R. S. [2]: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math.16, 362-369 (1971) · Zbl 0214.41405
[8] Brezzi, F. [1]: A paraître.
[9] Cea, J. [1]: Optimization. Paris: Dunod 1971
[10] Ciarlet, P. G., Raviart, P. A. [1]: General Lagrange and Hermite interpolation in ? n with applications to finite element methods. Arch. Rat. Mech. Anal.46, 177-189 (1972) · Zbl 0243.41004
[11] Ciarlet, P. G., Raviart, P. A. [2]: Interpolation theory over curved elements with applications to finite element methods. Computer Math. Appl. Mech. Engin.1, 217-249 (1972) · Zbl 0261.65079
[12] Ciarlet, P. G., Raviart, P. A. [3]: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Mathematical Foundation of the finite element method with applications to partial differential equations?(A. K. Aziz, ed.) 409-474. New York: Academic Press 1972 · Zbl 0262.65070
[13] Ciarlet, P. G., Wagschal, C. [1]: Multipoint Taylor formulas and applications to the finite element method. Numer. Math.17, 84-100 (1971) · Zbl 0199.50104
[14] Cook, R. D. [1]: Two hybrid elements for analysis of thick, thin and sandwich plates. Int. J. Numer. Meth. Eng.5, 277-288 (1972) · Zbl 0242.73037
[15] Crouzeix, M., Raviart, P. A. [1]: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I (à paraître) · Zbl 0302.65087
[16] Glowinski, R., Lions, J. L., Tremolieres, R. [1]: Ouvrage en préparation
[17] Grisvard, P. [1]: Caractérisation de quelques espaces d’interpolation. Arch. Rat. Mech. Anal.25, 40-63 (1967) · Zbl 0187.05901
[18] Hensall, R. D. [1]. On hybrid finite elements. The mathematics of finite elements and applications (ed. Whiteman). New York: Acad. Press 1973
[19] Kikuchi, F., Ando, Y. [1]: On the convergence of a mixed finite element scheme for plate bending. Nucl. Eng. Des.24, 357-373 (1973)
[20] Lions, J. L. [1]: Quelques méthodes de résolution de problèmes aux limites non linéaires. Paris: Dunod 1968
[21] Lions, J. L., Magenes, E. [1]: Nonhomogeneous boundary value problems and applications. I, II, Grund. B. 181-182. Berlin-Heidelberg-New York: Springer 1970
[22] Lions, J. L., Stampacchia, G. [1]: Variational inequalities. Comm. Pure Applied Math. XX, 43-96 (1967)
[23] Pian, T. H. H. [1]: Hybrid models. Int. Symp. on Numerical and Computer Methods in structural mechanics. Urbana-Illinois, Sept. (1971)
[24] Pian, T. H. H. [2]: Finite element formulation by variational principles with relaxed continuity requirements. The Mathematical Foundation of the finite element method with applications to partial differential equations A. K. Aziz, ed.). New York: Academic Press 1972 · Zbl 0274.65033
[25] Pian, T. H. H., Tong, P. [1]: A variational principle and the convergence of a finite element method based on assumed stress distribution. Int. J. Solids & Struct.5, 463-472 (1969) · Zbl 0167.52805
[26] Pian, T. H. H., Tong, P. [2]: Rationalization in Deriving element stiffness Matrix by assumed stress approach. Proceedings Second Conf. on Matrix Methods in Structural Mechanics?AFFDL TR-68-150?Wright Patterson, AFB, Ohio, (1968), 441-469
[27] Raviart, P. A. [1]: Cours de troisième cycle. E.R.A. 215 de l’Université de Paris VI (1971-72)
[28] Rockafellar, R. T. [1]: Monotone operators associated with saddle-functions and minimax problems. Proc. Symposium A.M.S. on non linear Functional Analysis, Avril (1968) · Zbl 0162.23103
[29] Sander, G. [1]: Applications de la méthode des éléments finis à la flexion des Plaques. Université de Liege-Fac. de Sci. Appl. Pubblic. N. 15 (1969)
[30] Strang, G. [1]: Approximation in the finite element method. Numer. Math.19, 81-98 (1972) · Zbl 0221.65174
[31] Strang, G., Fix, G. [1]: An analysis of the finite element method. New York: Prentice Hall 1973 · Zbl 0356.65096
[32] Zienkiewicz, O. C. [1]: The finite element method in engineering Science. London: McGraw-Hill 1971 · Zbl 0237.73071
[33] Zlámal, M. [1]: On the finite element method. Numer. Math.12, 394-409 (1968) · Zbl 0176.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.