×

zbMATH — the first resource for mathematics

Linear programming techniques for multidimensional analysis of preferences. (English) Zbl 0316.92024

MSC:
91E99 Mathematical psychology
90C90 Applications of mathematical programming
Software:
TORSCA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bennett, J. F., and Hays, W. L. Multidimensional unfolding: Determining the dimensionality of ranked preference data.Psychometrika, 1960,25, 27–43.
[2] Carroll, J. D. Polynomial factor analysis.Proceedings of the 77th annual convention of the American Psychological Association, 1969,4, 103–104.
[3] Carroll, J. D. Individual differences and multidimensional scaling. In Shepard, R. N., Romney, A. K., and Nerlove, S. (Eds.)Multidimensional scaling: theory and applications in the behavioral sciences. Vol. I: Theory. New York: Seminar Press, 1972.
[4] Carroll, J. D., and Chang, J. J. Nonparametric multidimensional analysis of paired-comparisons data. Paper presented at the joint meeting of the Psychometric and Psychonomic Societies in Niagara Falls, October, 1964
[5] Carroll, J. D., and Chang, J. J. Relating preference data to multidimensional scaling solutions via a generalization of Coomb’s unfolding model. Paper presented at meeting of Psychometric Society, Madison, Wisconsin, April, 1967.
[6] Charnes, A., and Cooper, W. W.Management models and industrial applications of linear programming, (Vol. I). New York: John Wiley, 1961. · Zbl 0107.37004
[7] Coombs, C. H. Psychological scaling without a unit of measurement.Psychological Review, 1950,57, 148–158.
[8] Dantzig, G. B.Linear programming and extensions, Princeton, New Jersey: Princeton University Press, 1963. · Zbl 0108.33103
[9] Garvin, W. W.Introduction to linear programming. New York, New York: McGraw-Hill Book Company, 1960.
[10] Gass, W. I.Linear programming: methods and applications. New York, New York, McGraw-Hill Book Company, 1958. · Zbl 0081.36702
[11] Gleason, T. C. Multidimensional scaling of sociometric data. Unpublished Ph.D. dissertation, Ann Arbor, Michigan: Institute for Social Research, The University of Michigan, 1969.
[12] Hadley, G.Nonlinear and dynamic programming. Reading, Massachusetts: Addison-Wesley, 1964. · Zbl 0179.24601
[13] Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal’s nonmetric scaling procedure.Psychometrika, 1969,34, 319–330.
[14] Klahr, D. A study of consumers’ cognitive structure for cigarette brands.The Journal of Business of the University of Chicago, 1970,43, 190–204.
[15] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. · Zbl 0123.36803
[16] Kruskal, J. B. How to use MDSCAL, a program to do multidimensional scaling and multidimensional unfolding. Unpublished report, Murray Hill, New Jersey: Bell Telephone Laboratories, 1968.
[17] Kruskal, J. B., and Carroll, J. D. Geometric models and badness-of-fit functions. In Krishniah, P. R. (Ed.)Multivariate analysis II, New York: Academic Press, 1969, 639–670.
[18] Lingoes, J. C. An IBM 7090 program for Guttmann-Lingoes smallest space analysis-RI.Behavioral Science, 1966,11, 332.
[19] MacCrimmon, K. R. Decision making among multiple-attribute alternatives: A survey and consolidated approach.Memorandum RM-4823-ARPA, Santa Monica, California: The RAND Corporation, 1968.
[20] Roskam, E. I. Metric analysis of ordinal data in psychology: Models and numerical methods for metric analysis of conjoint ordinal data in psychology. Ph.D. thesis, Katholieke Universiteit te Nijmegen, 1968.
[21] Shepard, R. N. Metric structures in ordinal data.Journal of Mathematical Psychology, 1966,3, 287–315.
[22] Shocker, A. D., and Srinivasan, V. A consumer-based methodology for the identification of new product ideas.Management Science, (in press), 1973. · Zbl 0281.62075
[23] Simmonard, M.Linear programming. Englewood Cliffs, New Jersey: Prentice-Hall, 1966.
[24] Slater, P. The analysis of personal preferences.British Journal of Statistical Psychology, 1960,13, 119–135.
[25] Srinivasan, V. Linear programming computational procedures for ordinal regression. Working paper (forthcoming), Rochester, New York; The University of Rochester, The Graduate School of Management, 1973.
[26] Srinivasan, V., and Shocker, A. D. Estimating the weights for multiple attributes in a composite criterion using pairwise judgements.Psychometrika, 1973, (in press). · Zbl 0281.62075
[27] Srinivasan, V., Shocker, A. D., and Weinstein, A. G. Measurement of a composite criterion of managerial success.Organizational behavior and human performance, 1973,9, 147–167.
[28] Tucker, L. R Intra-individual and inter-individual multidimensionality. In Gulliksen, H., and Messick, S., (Eds.),Psychological scaling: theory and applications, New York: John Wiley, 1960, 155–167.
[29] Wagner, H. M. Linear programming techniques for regression analysis.Journal of the American Statistical Association, 1959,54, 206–212. · Zbl 0088.35702
[30] Young, F. W., and Torgerson, W. S. TORSCA, A FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis.Behavioral Science, 1967,12, 498.
[31] Zangwill, W. I.Nonlinear programming: a unified approach. Englewood Cliffs, New Jersey: Prentice-Hall, 1969. · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.