×

Boundary value problems for the mildly non-linear ordinary differential equation of the fourth order. (English) Zbl 0317.34012

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
65J99 Numerical analysis in abstract spaces
65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Babuška I., Práger M., Vitásek E.: Numerical Processes in Differential Equations. Publishers of Technical Literature, Prague and Interscience Publishers, a Division of John Wiley & Sons, London - New York - Sydney 1966. · Zbl 0156.16003
[2] Gary J.: Computing Eigenvalues of Ordinary Differential Equations by Finite Differences. Mathematics of Computation, 19, No 91, (1965), p. 365-379. · Zbl 0131.14302
[3] Хао-Шоу: Однородные разностные схемы для уравнения четвертого порядка с разрывными коэффициентами. Ж. вычисл. матем. и матем. физ., 3, \? 5, (1963), p. 841-860. · Zbl 1145.93303
[4] Lees M.: Discrete Methods for Nonlinear two-point Boundary Value Problems. Numerical Solution of Partial Differential Equations, (J. H. Bramble, editor), p. 59-72, New York, Academic Press, 1966. · Zbl 0148.39206
[5] Marek I.: On Approximate Methods in Eigenvalue Problems. Čas. pro pěst. mat., 92 (1967), p. 89-104. · Zbl 0167.13903
[6] Růžičková H.: Boundary Value Problems for Ordinary Differential Equations of the 4th Order. (Czech). (Unpublished), CSc Thesis, VUT Brno, 1971.
[7] Самарский А. А.: Априорные оценки для разностных уравнений. Ж. вычисл, матем. и мат. физ., 1, \? 6, (1961), p. 972-1000. · Zbl 1160.68305
[8] Zlámal M.: On Mildly Nonlinear Elliptic Boundary Value Problems. Information Processing 68, p. 179-182, North-Holland Publ. Comp. - Amsterdam 1969. · Zbl 0204.48901
[9] Zlámal M.: Discretization and Error Estimates for Boundary Value Problems of the Second Order. Estrato da Calcolo, Vol. 4, fasc. 3, (1967), p. 541 - 550. · Zbl 0155.47803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.