×

Über assoziierte lineare und lokalkonvexe Topologien. (German) Zbl 0317.46005


MSC:

46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
46M15 Categories, functors in functional analysis
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)

References:

[1] ADASCH, N.: Über lokaltopologische Vektorräume. Proceedings of the Symposium on Functional Analysis. 51-56, Istambul, Silivri (1973). · Zbl 0295.46010
[2] BOURBAKI, N.: Espaces Vectoriels Topologiques. Chap. I?V, Paris: Hermann 1966.
[3] BUCHWALTER, H.: Topologies et Compactologies. Publ. Dép. Math. Lyon6-2, 1-74 (1969). · Zbl 0205.41601
[4] DAZORD, J., JOURLIN, M.: Sur quelques classes d’espaces localement convexes. Publ. Dép. Math. Lyon8-2, 39-69 (1971). · Zbl 0257.46001
[5] DE WILDE, M.: Vector Topologies and Linear Maps on Products of Topological Vector Spaces. Math. Ann.196, 117-128 (1972). · doi:10.1007/BF01419609
[6] DE WILDE, M., HOUET, C.: On increasing sequences of absolutely convex sets in locally convex spaces. Math. Ann.192, 257-261 (1971). · doi:10.1007/BF02075355
[7] DIEROLF, S.: Vererbbarkeitseigenschaften in topologischen Vektorräumen. Dissertation München 1974.
[8] IYAHEN, S.O.: On certain classes of linear topological spaces. Proc. London Math. Soc.18, 285-307 (1968). · Zbl 0165.14203 · doi:10.1112/plms/s3-18.2.285
[9] IYAHEN, S.O.: On certain classes of linear topological spaces II. J. London Math. Soc3, 609-617 (1971). · Zbl 0215.19402 · doi:10.1112/jlms/s2-3.4.609
[10] KÖHN, J.: Induktive Limiten nicht lokalkonvexer topologischer Vektorräume. Math. Ann.181, 269-278 (1969). · doi:10.1007/BF01350665
[11] KÖTHE, G.: Topological Vector Spaces I. Berlin-Heidelberg-New York: Springer-Verlag 1969. · Zbl 0179.17001
[12] K?MURA, Y.: On linear topological spaces. Kumamoto J. of Science5, 148-157 (1962).
[13] PORTA, H.: Compactly determined locally convex topologies. Math. Ann.196, 91-100 (1972). · doi:10.1007/BF01419606
[14] ROBERTSON, W.: Completions of topological vector spaces. Proc. London Math. Soc.8, 242-257 (1958). · Zbl 0081.32604 · doi:10.1112/plms/s3-8.2.242
[15] SWART, J.: Zur Theorie der Schwartz-Räume. Dissertation, ETH Zürich 1973.
[16] VALDIVIA, M.: Absolutely convex sets in barrelled spaces. Ann. Inst. Fourier Grenoble21, 3-13 (1971). · Zbl 0205.40904
[17] VALDIVIA, M.: Some new results on bornological barrelled spaces. Proceedings of the Symposium on Functional Analysis, 85-90, Istambul, Silivri (1973).
[18] VALDIVIA, M.: Quotients of complete locally convex spaces. Manuscripta math.14, 235-240 (1974). · Zbl 0293.46003 · doi:10.1007/BF01171409
[19] WAELBROECK, L.: Topological Vector Spaces and Algebras. Lecture Notes in Mathematics, Berlin-Heidelberg-New-York: Springer-Verlag 1971. · Zbl 0225.46001
[20] WILBUR, W.J.: Reflective and Coreflective Hulls in the Category of Locally Convex Spaces. Gen. Top. and its Appl.4, 235-254 (1974). · Zbl 0299.46063 · doi:10.1016/0016-660X(74)90024-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.